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Abstract

For each finite set of points in the Euclidean plane, and for each type of conic section—
elliptic, hyperbolic, or parabolic––the algorithm presented here determines all the algebrai-
cally best fitting conics of the selected type: the best ellipse, the best hyperbola, or the best
parabola. The supporting theory expands on Golub, Hoffman, and Stewart’s generalization
of the Schmidt–Mirsky matrix approximation theorem, on Bookstein’s and Pratt’s methods
to fit conics, and on Gander, Golub, and Strebel’s method to fit ellipses. Because neither the
set of ellipses nor the set of hyperbolae is closed, the algorithm and its supporting theory
must accommodate their boundary, which consists of the parabolic conics. The corresponding
optimization problem consists in minimizing a quadratic form with two quadratic constraints,
which an orthogonal change of variables transforms into a least-squares problem with one
quadratic constraint. Hence analogies with geodetic coordinates identify geometric causes of
numerical instability. For each type of conic, the resulting best fitting conic remains invariant
under Euclidean transformations. Applications include the theory and use of sundials in ar-
chaeology and astronomy.
© 2003 Elsevier Inc. All rights reserved.
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0. Introduction

The problem of fitting to data a conic of a type specified in advance arises in
several applications. For instance, the determination of the intended orientation of a
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sundial in archeology, and of the direction of due north in astronomy, can proceed by
fitting to shadow-plots a conic, the type of which depends on the latitude of the
intended location of the sundial [31]. However, there exist data for which there
does not exist any best fitting conic of the specified type. For example, horizontal
shadow-plots at latitudes between the artic circles must lie on hyperbolae, but through
measurement or rounding errors the data can lie closer to an ellipse. Then there can
exist an infinite sequence of hyperbolae, which fit the data increasingly well, but fail
to converge to any limiting hyperbola. Bookstein had already identified this issue:

The fitting of a parabola is a limiting case, exactly transitional between ellipse
and hyperbola. As the center of an ellipse moves off toward infinity [ . . .]—[4,
p. 58],

but without offering an algorithm to fit parabolae in general positions. Nevertheless,
the algorithm presented here identifies this situation, and produces the best fitting
parabola, at the boundary between the sets of hyperbolae and ellipses. To this end, the
algorithm minimizes a quadratic form subject to two simultaneous quadratic equality
constraints. There already exist several algorithms to fit general conics to data by
minimizing quadratic forms subject to one quadratic constraint––and optionally to
additional linear constraints––to obtain circles [20], conic splines, or conics with
axes parallel to the coordinate axes [4,21], and to fit circles or ellipses [5;6, Section
21.10;12;30]. Yet any algebraic method to fit parabolae in general positions hitherto
appears to be lacking.

The proofs and the algorithm presented here rely on the following notation for the
singular-value decomposition (SVD) of matrices [14, p. 71]. Let Mm×n(R) denote
the set of all matrices with m rows, n columns, and entries in the real numbers
R. With � := min{m, n}, define D := diagonal(d1, . . . , d�) ∈ Mm×n(R) to be the
matrix such that Di,i = di for every i ∈ {1, . . . , �}, and Di,j = 0 otherwise. For
example, let I�×� := diagonal(1, . . . , 1) ∈ M�×�(R) denote the identity matrix. For
every matrix G ∈ Mm×n(R) with rank r , the singular-value decomposition of G =
U�V T consists of orthogonal matrices V ∈ Mn×n(R) and U ∈ Mm×m(R), and of a
positive semi-definite diagonal matrix � = diagonal(σ1 � · · · � σr > 0 = σr+1 =
· · · = σ�) ∈ Mm×n(R). Also, the pseudo-inverse [14, p. 243] of the diagonal mat-
rix � = diagonal(σ1, . . . , σr , 0, . . . , 0) is �† := diagonal(1/σ1, . . . , 1/σr , 0, . . . , 0)
∈ Mn×m(R), and the pseudo-inverse of G is defined as G† := V�†UT. Finally, the
subordinate Euclidean norm of G is ‖G‖2 := σ1, and the square of its Frobenius
norm is ‖G‖2

F := ∑m
i=1

∑n
j=1 G

2
i,j = ∑r

i=1 σ
2
i .

The notation just established allows for detailed comparisons and contrasts be-
tween the theory and algorithms presented here and closely related current methods
[4,12,20,21]. Specifically, each conic C in the Cartesian plane R2 can be specified
by a symmetric matrix S ∈ M3×3(R), so that each point �x ∈ R2 lies on C if and only
if it satisfies the quadratic equation(�xT 1

)
S

(�x
1

)
= 0. (0.1)
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The matrix S also admits of a partition in the form

S =
(
A �b
�bT c

)
, (0.2)

with a symmetric matrix A ∈ M2×2(R), a vector �b ∈ R2, and a scalar c ∈ R. Equiva-
lently, the entries of S can be arranged in lexicographic (or any other) order in vectors
�w and �s defined by

�w :=
(
a1,1,

√
2a1,2, a2,2

)T
, (0.3)

�s := (c, 2�b, �w)T. (0.4)

Following Bookstein [4], and Gander et al. [12], the algebraic objective function F

adopted here equals the sum of the squares of the values of the left-hand side of Eq.
(0.1) at each data point �xi = (xi, yi):

F(S) :=
N∑
i=1

[(�xT
i 1

)
S

(�xi
1

)]2

, (0.5)

which measures the extent to which all the data fail to lie on a common conic C.
Moreover, with the monomials in the entries of the data arranged in the order of Eq.
(0.3), there is a matrix M with monomials from the data,

M :=
1; x1 y1; x2

1 ,
√

2x1y1, y2
1

...
...

...
...

...

1; xN yN ; x2
N,

√
2xNyN, y2

N

 , (0.6)

so that the function F becomes the square of a Euclidean norm ‖ ‖2
2:

F(�s) = ‖M�s‖2
2. (0.7)

Because scaling equation (0.1) by a non-zero factor does not affect its solution S, the
minimization of the objective function F requires a scaling constraint, which must
remain invariant under Euclidean transformations for applications that are invariant.
For instance, Bookstein [4] imposes the invariant constraint ‖A‖F = ‖�w‖2 = 1.

By Golub et al.’s theorem [13], minimizing F subject to ‖�w‖2 = 1 amounts to
determining the singular matrix M̃ closest to M with the same first three columns.
To this end, partition M = [MI;MII] with

MI :=
1 x1, y1
...

...
...

1 xN, yN

 , MII :=
x2

1 ,
√

2x1y1, y2
1

...
...

...

x2
N,

√
2xNyN, y2

N

 . (0.8)

Then factor M = QR with Q ∈ MN×N(R) orthogonal and R ∈ MN×6(R) upper
triangular [14, Section 5.2]. The matrix R admits of a corresponding partition

R =
(
R1,I R1,II

0 R2,II

)
, (0.9)

with R1,I ∈ M3×3(R) and R2,II ∈ M(N−3)×3(R) both upper triangular.
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Yet this factorization requires the determination of a basis for the range of MI
[13, p. 320], which can be numerically unstable [14, pp. 245–248]. In principle,
the solution �w is a right-singular vector for the smallest singular value of R2,II [13,
p. 322, Eq. (3.6)], so that �w solves the problem of

minimizing ‖R2,II �w‖2 (0.10)

subject to ‖�w‖2 = 1. (0.11)

Then �v := (c, 2�bT)T solves R1,I�v = −R1,II �w. However, R1,I can be ill-conditioned
or singular if all the data lie near or on a straight line. Also, a theorem of Stewart’s
[26, p. 515] shows that the sensitivity of the factorization M = QR diverges to
infinity as the data near a perfect fit. Indeed, for all matrices G,G′ ∈ Mm×n(R),
let �G := G′ − G. Then with ‖ ‖ denoting the Frobenius or spectral norm, G† the
pseudo-inverse of G, and κ(G) := ‖G‖ · ‖G†‖ the corresponding condition number,
Stewart’s theorem states that for all matrices G,G′ ∈ Mm×n(R), if G = QR and
G′ = Q′R′, then

‖�R‖
‖G‖ � 2

(
2 + √

2
)
nκ(G)

‖�G‖
‖G‖ , (0.12)

‖�Q‖
‖Q‖2

�
3κ(G)

‖�G‖
‖G‖

1 − 2κ(G)
‖�G‖
‖G‖

. (0.13)

With G := M , at a perfect fit M(�vT, �wT)T = M�s = �0, and then κ(M) = ∞. This
paradox disappears with the realization that the sensitivity of the fitted conic depends
on the factorization MI = QIR1,I rather than on that of M , as explained in the last
paragraph of Section 6.

A different issue arises if the algorithm produces a conic C of a type different
from the one sought. The conic C corresponds to the equivalence class [�s] of �s
in the projective space P(R6) = P5 [10, p. 108]. This bijection C �→ [�s] from the
set of all conics to the projective space P5 also pulls back to the set of conics any
topology from P5, for instance, the Hausdorff topology induced from R6, or the
Zariski topology, where a set is closed if and only if it is a projective algebraic set
[10, p. 132]. In either topology, the set of all parabolic conics is closed, because it
is defined by the homogeneous equation det(A) = 0. Hence its complement––where
det(A) /= 0––is open but not closed. In the Hausdorff topology, the set of elliptic
conics, where det(A) > 0, and the set of hyperbolic conics, where det(A) < 0, are
each open but not closed either. Therefore, a continuous objective function can fail
to have a global minimum on either set. However, their closures––where det(A) � 0
or where det(A) � 0––are compact in the Hausdorff topology, so that any continous
objective function has a global mimimum.
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Thus the problem of fitting to data a conic of a specified type can involve minimiz-
ing such an objective as in equation (0.10) subject to two simultaneous constraints:
one on ‖A‖F and the other on det(A).

To simplify the theory and the computations, Section 1 performs an orthogonal
change of variables on the vector of the entries of the symmetric matrix A, so that
the quadratic forms ‖A‖2

F and det(A) are both diagonal. Section 2 then shows how to
identify the optimal solution from multiple stationary points, and Section 4 describes
the final algorithm in detail. Section 3 charaterizes the solution in terms of a dual
minimal perturbation ofthe data. For further perturbation analyses, Section 5 collects
results on the sensitivity of singular vectors of projections of matrices. Analyses of
the sensitivity to perturbations of the data then follow in Section 6 for general conics,
and in Section 7 for parabolae. Finally, Section 8 shows applications and test cases.

1. Transformations of constraints

For each symmetric matrix A ∈ M2×2(R), the square of the Frobenius norm ‖A‖2
F

and the determinant det(A) are quadratic forms in the entries of A. For the matrices
of both quadratic forms to be diagonal, Theorem 1.1 introduces a diagonal matrix D

and an orthogonal transformation �r := Z �w defined by

D := 1

4

−1 0 0
0 −1 0
0 0 1

 , Z := 1√
2

−1 0 1
0

√
2 0

1 0 1

 . (1.1)

Theorem 1.1. For each symmetric matrix A ∈ M2×2(R) if �r = Z �w, then

‖A‖2
F = �rTI�r, (1.2)

det

(
a1,1 a1,2
a1,2 a2,2

)
= �rTD�r. (1.3)

Proof. From (0.3) and (1.1) the proof is a straightforward calculation. �

For future reference, r3 = (w1 + w3)/
√

2 = (a1,1 + a2,2)/
√

2 = trace(A)/
√

2.
Thus Z transforms the simultaneous quadratic constraints

‖A‖2
F = 1, (1.4)

det(A) = 0, (1.5)
into the simultaneously diagonal quadratic constraints

�rT�r = 1, (1.6)

�rTD�r = 0. (1.7)

Adding and subtracting Eqs. (1.6) and (1.7) gives
�rT�r = r2

1 + r2
2 + r2

3 = 1, (1.8)
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�rTD�r = −(r2
1 + r2

2 ) + r2
3 = 0; (1.9)

�rT�r + �rTD�r = 2r2
3 = 1, (1.10)

�rT�r − �rTD�r = 2(r2
1 + r2

2 ) = 1. (1.11)

The sum (1.10) gives the constant constraint trace(A) = √
2r3 = ±1. The difference

(1.11) leads to the transformation

�q =
(
q1
q2

)
:= √

2

(
r1
r2

)
, (1.12)

so that the constraints (1.4) and (1.5) or (1.6) and (1.7) reduce to one constraint:

‖�q‖2 = 1. (1.13)

The problem of fitting to data a parabola will amount to minimizing a quadratic form
of the type ‖T �w‖2

2 subject to such constraints, as in Eqs. (0.10) and (0.11), with a
matrix T ∈ Mk×3(R) equal to a variant of R2,II ∈ M(m−3)×3(R) in Eq. (0.9). For
each matrix T ∈ Mk×3(R), the problem of

• minimizing ‖T �w‖2
• subject to the two constraints (1.4) and (1.5): ‖�w‖2 = 1 and det(A) = 0

reduces, after the change of variables defined by Z, to the problem of

• minimizing ‖(T Z)�r‖2
• subject to the two constraints (1.6) and (1.7): �rT�r = 1 and �rTD�r = 0.

This problem remains invariant under multiplication by −1, so that the choice√
2r3 = +1 with

√
2�rT = (�qT, 0) + �eT

3 lead to the problem of

• minimizing ‖(T Z)1−2�q + (T Z)�e3‖2
• subject to the single constraint (1.13): ‖�q‖2 = 1,

where (T Z)1−2 ∈ Mk×2(R) consists of columns 1 and 2 of T Z. With G := (T Z)1−2
and �p := −G�e3, Section 2 minimizes ‖G�q − �p‖2 subject to ‖�q‖2 = 1. The solution
�q then corresponds to the symmetric matrix A with entries a1,1√

2a1,2
a2,2

 = �w = Z�r = Z
1√
2

q1
q2
1

 . (1.14)

2. The secular equation

The minimization of ‖G�q − �p‖2 under the quadratic constraint ‖�q‖2 = 1 can pro-
ceed through the method of Lagrange multipliers. The equation that determines the
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Lagrange multiplier––called the “secular equation” [14, p. 564]––can have several
solutions, corresponding to several stationary points of the objective functions. The
problem of determining which solution of the secular equation (which Lagrange
multiplier) corresponds to a global minimum of the objective over the feasible set has
been studied by Gander [11, Section 8]. To this end, a comparison with an equivalent
geometric problem also proves useful. Specifically, let Sn−1 denote the unit sphere
in Rn. Then its image G(Sn−1) by a matrix G ∈ Mm×n(R) is an ellipsoid in Rm.
Hence the following two problems are mutually equivalent:

Problem 2.1. Find a unit vector �q ∈ Sn−1 minimizing ‖G�q − �p‖2.

Problem 2.2. On the ellipsoid G(Sn−1), find a point G�q closest to �p.

For n = 2, Problem 2.2 shows that Problem 2.1 amounts to computing the geo-
detic distance from a point �p ∈ Rm to an ellipse G(S1) ⊂ Rm. (This ellipse is the
set of feasible parameters; in particular, this ellipse has no relation to the fitted conic
C, other than containing a point G�q corresponding to the yet unknown parameters
�q of C.) If the point �p lies outside the ellipse, then by convexity there exists exactly
one closest point; moreover, for ellipses with small eccentricities, the distance can
be computed accurately by iterating a contracting map [17]. However, if the point �p
lies inside the ellipse, then the distance from �p can have local extrema besides the
global minimum on the ellipse [2, p. 238, Theorem 17.5.5.6], as shown in Fig. 1.

This geometric formulation also shows that such a problem can have either exactly
one solution, or multiple solutions. Such multiple solutions occur if and only if �p
is perpendicular to a shortest principal axis, and closer to the center of the ellipse
than the center of curvature at the opposite vertex, as in Fig. 2. Otherwise, then by
symmetry and convexity there exists only one closest point on the ellipse, in the same
quadrant where �p lies.

With a singular-value decomposition G = U�V T = σ1�u1�vT
1 + σ2�u2�vT

2 , the vec-
tor �y := UT�p is the orthogonal projection of �p on the range of G. Moreover, the
ellipse G(S1) has its major and minor principal axes with lengths σ1 and σ2 along
the left-singular vectors �u1 and �u2 of G. Thus the condition that �p not be perpen-
dicular to the shorter axis becomes |σ2y2| > 0 = σ 2

2 − σ 2
2 . Furthermore, the radius

of curvature at the vertex on the major principal axis equals σ 2
2 /σ1, so that the

Fig. 1. Global minimum (◦) and maximum (�), local minimum (�) and local maximum (♦), for the
distance from a point �p (tip of ↑) to an ellipse.
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Fig. 2. Multiple global minima or large perturbations of the global minimum (◦) can occur for small
perturbations of a point �p (tip of ↑) farther away from a vertex than the center of curvature (•) at that
vertex.

center of curvature lies at σ1 − σ 2
2 /σ1 = (σ 2

1 − σ 2
2 )/σ1 [2, p. 246, Section 17.7.4].

Thus the condition that �y lies farther away from the center of the ellipse than the
center of curvature does becomes |σ1y1| > σ 2

1 − σ 2
2 . Corroborating this geometric

analysis, Theorem 2.3 confirms that Problem 2.1 has a unique solution––counted
with multiplicities––if and only if |σ�y�| > σ 2

� − σ 2
2 for at least one � ∈ {1, 2}. With

the notation adopted here, Gander has shown that this solution corresponds to the
smallest Lagrange multiplier [11, Section 4]; the proof of Theorem 2.3 refines this
estimate by providing a finite interval, computable from the data, which contains this
Lagrange multiplier.

Theorem 2.3. For each G ∈ Mm×2(R) with a singular-value decomposition G =
U�V T, and for each �p ∈ Rm with �y := UT�p, Problem 2.1 has exactly one––
simple––solution if and only if |σ�y�| > σ 2

� − σ 2
2 for some � ∈ {1, 2}.

Proof. Problem 2.1 is equivalent to finding �z := V T�q ∈ R2 minimizing

f (�z) := ‖��z − �y‖2
2 = ‖UT{G(V �z) − �p}‖2

2 = ‖G�q − �p‖2
2, (2.1)

subject to the constraint 1 = ‖�q‖2
2 = ‖V T�q‖2

2 = ‖�z‖2
2, or, equivalently,

g(�z) := �zT�z − 1 = 0. (2.2)

Lagrange’s equation gradient(f ) = λgradient(g) takes the form [14, p. 563]

(�T� − λI)�z = �T�y. (2.3)

At a minimum �z, the matrix �T� − λI must be positive semi-definite on the space
�z⊥ tangent to the unit circle at �z, whence λ � σ 2

2 [9, p. 166, #11]. If λ = σ 2
2 , then

σ2y2 must vanish, because system (2.3) becomes

(σ 2
1 − σ 2

2 )z1 = σ1y1, (2.4)

0z2 = σ2y2. (2.5)
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To keep track of which product(s) σiyi = 0, define

k :=


2 if σ2y2 /= 0,
1 if σ2y2 = 0 /= σ1y1,

0 if σ2y2 = 0 = σ1y1.

(2.6)

If σ1y1 /= 0 or σ2y2 /= 0, and λ /∈ {σ 2
1 , σ

2
2 }, then (2.3) has one solution �z(λ):

zi(λ) := σiyi

σ 2
i − λ

(2.7)

for each i ∈ {1, 2}. The constraint ‖�z(λ)‖2
2 = 1 is the “secular” equation

ϕ(λ) :=
k∑

i=1

σ 2
i y

2
i

(σ 2
i − λ)2

= ‖�z(λ)‖2
2 = 1. (2.8)

Eq. (2.8) has exactly one (simple) solution λ∗ such that λ∗ < σ 2
k , because ϕ increases

on the open interval ] −∞, σ 2
k [, with limλ↘−∞ ϕ(λ) = 0 and limλ↗σ 2

k
ϕ(λ) = +∞,

thanks to σ 2
k y

2
k > 0. To narrow down this interval, let

λ, := σ 2
k − √

k max
1�i�k

|σiyi |, (2.9)

λ- := σ 2
k − |σkyk|. (2.10)

If λ < λ,, then σ 2
i − λ > σ 2

i − λ, �
√
k max1�i�k |σiyi | �

√
k|σiyi |, whence

ϕ(λ) =
k∑

i=1

σ 2
i y

2
i

(σ 2
i − λ)2

<

k∑
i=1

σ 2
i y

2
i

(
√
k|σiyi |)2

= 1. (2.11)

Similarly, if λ- < λ, then (σ 2
k − λ)2 < σ 2

k y
2
k , whence

1 <
σ 2
k y

2
k

(σ 2
k − λ)2

�
k∑

i=1

σ 2
i y

2
i

(σ 2
i − λ)2

= ϕ(λ). (2.12)

Thus, the unique solution λ∗ < σ 2
k lies in the finite closed interval [λ,, λ-].

Direct implication. Assume that |σ�y�| > σ 2
� − σ 2

2 for some � ∈ {1, 2}; in partic-
ular, |σ�y�| > σ 2

� − σ 2
2 � σ 2

2 − σ 2
2 � 0. Firstly, λ := σ 2

2 is not a Lagrange multiplier
minimizing (2.1) subject to (2.2): if λ = σ 2

2 , then (2.5) forces |σ2y2| = 0 = σ 2
2 − σ 2

2 ,
whence � = 1 and |σ1y1| > σ 2

1 − σ 2
2 � 0 by hypothesis. Hence (2.4) has a solution

if and only if σ 2
1 − σ 2

2 /= 0, but then |z1| = |σ1y1|/(σ 2
1 − σ 2

2 ) > 1, so that (2.3) has
no solutions with ‖�z‖2 = 1.

Secondly, λ- < σ 2
2 : if k = 2, then σ2y2 /= 0, whence λ- = σ 2

2 − |σ2y2| < σ 2
2 ; if

k = 1, then σ2y2 = 0, but the hypothesis guarantees that |σ1y1| > σ 2
1 − σ 2

2 , so that
λ- = σ 1

1 − |σ1y1| < σ 1
k − (σ 2

1 − σ 2
2 ) = σ 2

2 . Consequently, λ∗ � λ- < σ 2
2 . Therefore,

λ∗ corresponds to the unique global constrained minimum of f .
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Converse implication. Assume that |σiyi | � σ 2
i − σ 2

2 for every i ∈ {1, 2}. Hence
0 � |σ2y2| � σ 2

2 − σ 2
2 = 0, and the secular equation reduces to

ϕ(λ) =
k∑

i=1

σ 2
i y

2
i

(σ 2
i − λ)2

= σ 2
1 y

2
1

(σ 2
1 − λ)2

= 1. (2.13)

Case 1. If σ1y1 /= 0, then (2.13) has two solutions: λ2 := σ 2
1 + |σ1y1| > σ 2

1 and
λ1 := σ 2

1 − |σ1y1| � σ 2
1 − (σ 2

1 − σ 2
2 ) = σ 2

2 . Hence σ 2
2 � λ1 < λ2, so that �T� −

λj I fails to be positive definite for each solution λj . Yet derived from Eq. (2.8), the

secular equation (2.13) holds only for λ /∈ {σ 2
1 , σ

2
2 }. Thus the minimum occurs for

some λ ∈ {σ 2
1 , σ

2
2 }, whence λ = σ 2

2 .
From σ1y1 /= 0, it also follows that 0 < |σ1y1| � σ 2

1 − σ 2
2 , whence (2.4) has ex-

actly one solution, given by Eq. (2.7):

z1(λ) = σ1y1

σ 2
1 − λ

= σ1y1

σ 2
1 − σ 2

2

, (2.14)

with |z1(λ)| � 1 because |σ1y1| � σ 2
1 − σ 2

2 under the new hypotheses. From σ2y2 =
0 and λ = σ 2

2 , it also follows that Eq. (2.5) become 0z2 = 0, which admits infinitely

many solutions z2. From ‖�z(λ)‖2 = 1, it follows that z2 = ±√1 − |z1(λ)|2 gives
two solutions, counted with multiplicities.

Case 2. If σiyi = 0 for each i ∈ {1, 2}, which occurs if and only if �p is perpen-
dicular to the range of G, then in its common form (2.8) [3, p. 207, Eq. (5.3.21)],
[14, p. 564] the secular equation has no solutions. Nevertheless, system (2.3) admits
non-zero solutions if and only if it becomes singular, which occurs if and only if
λ ∈ {σ 2

1 , σ
2
2 }, in particular, λ := σ 2

2 at a minimum. If σ1 > σ2, then the solution
λ = σ 2

2 corresponds to �z = ±�e2 and hence �q = V �z = ±�v2, which minimizes f sub-
ject to g, because ‖G�q − �p‖2

2 = ‖G�q‖2
2 + ‖�p‖2

2 = σ 2
2 + ‖�p‖2

2 with �p perpendicular
to the range of G. If σ1 = σ2, then f is constant on S1, and every �z ∈ S1 gives the
minimum σ 2

2 + ‖�p‖2
2. �

The literature proposes several numerical methods to solve Problem 2.1. For
applications seeking the shortest least-squares solution minimzing ‖G�q − �p‖2,
estimations of a suitable Lagrange multiplier––without exactly solving the secular
equation––followed by orthogonal transformations to minimize the objective can
prove computationally efficient [3, Section 5.3;11, Section 4;18, p. 190]. However,
for applications calling for a least-squares solution with a specified length, such as
‖�q‖2 = 1 here, or for greater numerical accuracy rather than efficiency, the literature
recommends computing the singular-value decomposition of G [3, p. 208;14, p.
564], and then solving the secular equation through Newton’s method [14, p. 564;18,
p. 193].

To this end, Algorithm 2.4 solves the secular equation (2.8). In general, with
σ2y2 /= 0 and |σ1y1| > σ 2

1 − σ 2
2 , the function ϕ is strictly convex, so that New-

ton’s method converges monotonically and quadratically to λ∗ from the upper bound
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λ0 := λ-. In all the other situations, either algebra gives λ∗ = σ 2
2 − |σ2y2| or λ∗ =

σ 2
1 − |σ1y1|, or the condition for a minimum gives λ∗ = σ 2

2 .

Algorithm 2.4 (Solution of the secular equation).

PROCEDURE secular(σ1, σ2, y1, y2).
DATA: 0 � σ2 � σ1 ∈ R, y1, y2 ∈ R.
RESULT: Lagrange multiplier λ∗ ∈ R with λ∗ � σ 2

2 .
START

If σ2y2 = 0 and |σ1y1| � σ 2
1 − σ 2

2 , then λ := σ 2
2 ;

else if σ2y2 = 0 and |σ1y1| > σ 2
1 − σ 2

2 , then λ := σ 2
1 − |σ1y1|;

else if σ2y2 /= 0 and |σ1y1| � σ 2
1 − σ 2

2 , then λ := σ 2
2 − |σ2y2|;

else if σ2y2 /= 0 and |σ1y1| > σ 2
1 − σ 2

2 , then

λ, := σ 2
2 − √

2 max{|σ1y1|, |σ2y2|},
λ- := σ2(σ2 − |y2|),
ϕ(λ) :=

(
σ1y1

σ 2
1 −λ

)2

+
(

σ2y2

σ 2
i −λ

)2

,

solve ϕ(λ∗) = 0 on [λ,, λ-], e.g., with Newton’s method;
end if;
return secular(σ1, σ2, y1, y2) := λ∗.
STOP.

Following [14, p. 564], Algorithm 2.5 relies on Theorem 2.3 and Algorithm 2.4
to minimize ‖G�q − �p‖2 subject to ‖�q‖2 = 1.

Algorithm 2.5 (Minimizing ‖G�q − �p‖2 subject to ‖�q‖2 = 1).

PROCEDURE geodetic(m,G, �p).
DATA: m � 2, G ∈ Mm×2(R), �p ∈ Rm.
RESULT: �q ∈ R2 minimizes ‖G�q − �p‖2 with ‖�q‖2 = 1.
START

Compute the singular-value decomposition
G = U�V T = σ1�u1�vT

1 + σ2�u2�vT
2 ;

compute the orthogonal projection
�y := (y1, y2) := (�uT

1 �p, �uT
2 �p);

compute the Lagrange multiplier, e.g., by Algorithm 2.4
λ∗ := secular(σ1, σ2, y1, y2);

if λ∗ = σ 2
2 , then

�z := �e2 := (0, 1)T;
else

z1 := σ1y1/(σ
2
1 − λ∗),

z2 := σ2y2/(σ
2
2 − λ∗),
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end if;
�q := V �z = z1�v1 + z2�v2;
return geodetic(m,G, �p) := �q.
STOP.

3. Equivalent perturbations of the data

Linear least-squares problems can have two equivalent “dual” formulations.
For example, if G ∈ Mm×n(R) has rank n and a singular-value decomposition

G = ∑n
i=1 σi �ui�vT

i , then the problem of finding a unit vector �v minimizing ‖G�v‖2
admits the solution �v := �vn. Dually, the problem of finding a singular matrix S ∈
Mm×n(R) minimizing ‖G − S‖F admits the solution S := G − σn�un�vT

n by a the-
orem of Schmidt’s [22] and Mirsky’s [19].

More generally, the problem of finding a unit vector �v perpendicular to the first
k columns of G and minimizing ‖G�v‖2 is dual to the problem of finding a singular
matrix S ∈ Mm×n(R) with the same first k columns of G and minimizing ‖G − S‖F,
by Golub et al.’s theorem [13].

In either of the examples just cited, if the entries of the matrix G arise from data,
and if the vector �v consists of parameters fitted to the data, then the dual formulation
corresponds to the smallest perturbation S of the matrix G that fits the parameters in
�v exactly, because S�v = �0.

To find a dual to Problem 2.1, denote by PG the orthogonal projection of Rm on
the range R(G) of a matrix G ∈ Mm×n(R), and let P⊥

G := I − PG.

Problem 3.1. Find matrices J,H ∈ Mm×n(R) and a unit vector �q ∈ Rn

• minimizing the Frobenius norms ‖J‖F and ‖H‖F
• subject to (G + J )�q = PG(�p) and (G + J + H)�q = �p.

The following theorem shows that the optimal solution �q∗ ∈ Sn−1 minimizing
‖G�q − �p‖2 corresponds to a minimal perturbation of the matrix G.

Theorem 3.2. Problems 2.1 and 3.1 are equivalent.

Proof. With �z∗ := V T�q∗, define �t∗ := (UTPG)�p − ��z∗ and � := �t∗�zT∗ . Thus ��z∗ =
�t∗, whence (� + �)�z∗ = (UTPG)�p, and then ‖�‖2 = ‖�t∗‖2 = ‖(UTPg)�p − ��z∗‖2.
For every matrix Υ such that (� + Υ )�z∗ = (UTPG)�p,

‖Υ ‖F � ‖Υ ‖2,2 � ‖Υ ‖2,2 · ‖�z∗‖2 � ‖Υ �z∗‖2 = ‖�t∗‖2. (3.1)

Thus � and J := U�V T are the matrices with the smallest Euclidean and Frobenius
norms with (� + �)�z∗ = (UTPG)�p and (G + J )�q∗ = PG(�p).
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Similarly, if �h := P⊥
G �p, and if H := �h�qT∗ , then ‖H‖F = ‖H‖2,2 = ‖�h‖2 are the

smallest norms such that (G + J + H)�q∗ = �p.
Moreover, since U�t∗ ∈ R(G) and �h ⊥ R(G), it follows that for both norms ‖J +

H‖2 = ‖J‖2 + ‖H‖2. Because R(J ) ⊥ R(H), and for every matrix B ∈ Mm×n(R)

and every unit vector �q ∈ Sn−1 such that (G + B)�q = �p,

‖B‖2
F �‖B‖2

2 � ‖B�q‖2
2 = ‖(PG�p − G�q) + P⊥

G �p‖2
2 (3.2)

=‖PG�p − G�q‖2
2 + ‖P⊥

G �p‖2
2 � ‖J‖2

2 + ‖H‖2
2 = ‖J + H‖2

2 (3.3)

=‖J‖2
2 + ‖H‖2

2 = ‖J‖2
F + ‖H‖2

F = ‖J + H‖2
F. (3.4)

Thus B := J + H has the smallest norm with (G + B)�q = �p for �q ∈ Sn−1. �

4. Fitting conics of specific types to data

The following algorithm is a variant of one by Gander, Golub, and Strebel’s [12,
p. 564], with an option to fit parabolae in general positions. To guarantee the invari-
ance under translations, the algorithm first subtracts the mean

x := 1

N

N∑
i=1

�xi (4.1)

from each data point �xi , thus producing centered data defined by

(x̌i , y̌i )
T = x̌i := �xi − x. (4.2)

Then the algorithm minimizes Gander et al.’s objective (0.10),

F(�w) := ‖R2,II �w‖2, (4.3)

with Bookstein’s constraint [12, p. 564], thus minimizing F subject to

‖�w‖2
2 = 1. (4.4)

However, because of the change of parameters Z related to the constraint det(A) = 0
in Section 1, the algorithm presented here performs this change of variables at the
outset, producing (instead of M) a matrix of monomials

M̌ :=
1 x̌1 y̌1 y̌2

1 − x̌2
1 2x̌1y̌1 y̌2

1 + x̌2
1

...
...

...
...

...
...

1 x̌N y̌N y̌2
N − x̌2

N 2x̌N y̌N y̌2
N + x̌2

N

 . (4.5)

Pratt uses the same matrix M̌ , but with a different constraint [21, p. 150]. By Golub
et al.’s theorem [13], minimizing F subject to ‖�w‖2

2 = 1 amounts to determining the
singular matrix M̃ closest to M̌ with the first three columns kept constant. To this
end, let M̌j be the j th column of M̌ , and let M̌k−� consist of columns k through �
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of M̌ . The constraint (4.4) thus corresponds to the partition M̌ = [M̌1; M̌2−3; M̌4−6]
with

M̌1 := �1 :=
1
...

1

 , M̌2−3 :=
 x̌1 y̌1

...
...

x̌N y̌N

 , (4.6)

M̌4−6 :=
 y̌2

1 − x̌2
1 2x̌1y̌1 y̌2

1 + x̌2
1

...
...

...

y̌2
N − x̌2

N 2x̌N y̌N y̌2
N + x̌2

N

 . (4.7)

With centered data,
∑m

i=1 x̌i = 0 = ∑m
i=1 y̌i , so that M̌1 = �1 ⊥ M̌2−3. Consequently,

rank(M̌1−3) = 1 + rank(M̌2−3). Moreover, M̌2−3 is also the matrix used to fit a
straight line to data by total least-squares [7]. Hence computing rank(M̌1−3) amounts
to determining whether 1/κ2,2(M̌2−3) is numerically negligible. If so, then the pro-
cess must stop, because rank(M̌) � 3, and then R2,II = 0 identically. Indeed, the
rank remains invariant under changes of coordinates, and if the line lies on the first
coordinate axis, then M̌3−5 = 0.

If M̌2−3 is not numerically singular, then M̌ can still be singular, indeed M̌ is
(nearly) singular if the data lie (nearly) on a common conic, which can needlessly
complicate the perturbation analysis of its QR factorization. However, the success
of Gander et al.’s strategy [12, p. 564] does not require a complete factorization
M̌ = Q̌Ř. Indeed, Golub et al.’s theorem [13, p. 319] requires only the subtraction
from M̌4−6 of its orthogonal projection on M̌1−3. To this end, the algorithm presented
here need factor only M̌1−3, in the form

M̌1−3 = Q̌3Ř3 = Q̌3

(
Ř1,1

0

)
, (4.8)

with Q̌3 ∈ MN×N(R) orthogonal and Ř1,1 ∈ M3×3(R) upper triangular [14, Section
5.2]. The algorithm then applies Q̌T

3 to all of M̌ to produce

Q̌T
3M̌ = Ř =

(
Ř1,1 Ř1,2

0 Ř2,2

)
, (4.9)

where Ř2,2 ∈ M(N−3)×3(R) need not be upper triangular. The solution �w is then a
right-singular vector for the smallest singular value of Ř2,2, and then �v := (c, 2�bT)T

is the solution of the upper triangular system Ř1,1�v = −Ř1,2 �w.
If the solution (c, 2�b, �w) does not correspond to a conic of the specified type, then

the constraint det(A) = 0 must be activated, and the algorithm proceeds as outlined
in Section 2. The resulting algorithm proceeds as follows.
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Algorithm 4.1 (To fit conics by algebraic total least-squares).

PROCEDURE conic(N, �x1, . . . , �xN).
DATA: A positive integer N ∈ N∗, and a sequence (�x1, . . . , �xN) ∈ (R2)N .
RESULTS: coefficients of the equation of the fitted conic (c, 2�b, �w, x) ∈ R9.
START

Compute the mean x := 1
N

∑N
i=1 �xi ;

for each i ∈ {1, . . . , N}, center the data by(
x̌i , y̌i

)T := x̌i := �xi − x;
end for;
form the matrix M̌ = [M̌1; M̌2−3; M̌4−6] as in equations (4.5), (4.6), (4.7);
compute the singular-value decomposition of M̌2−3 ∈ MN×2(R);
if 1/κ2,2(M̌2−3) = 0, then

fit the TLS line, with equation (�x − x)T�v2 = 0:
�b := �v2, c := 0, �w := �0;

else, if σ2(M̌2−3)/σ1(M̌2−3) > 0, then
factor M̌1−3 = Q̌3Ř3 as in equation (4.8);
compute Ř := Q̌T

3M̌ as in equation (4.9);
if the desired conic is elliptic or hyperbolic, then

compute the SVD of Ř2,2 = Ř(4−N; 3−6)∈ M(N−3)×3(R) in equation (4.9);
let �q ∈ R3 be a right-singular vector for the smallest singular value of Ř2,2;
identify the type of conic through trace(A) = q3 and det(A) = (1/2)�qTZ�q;

end if;
if the type just obtained does not match the specified type,
or if the desired conic is parabolic, then

G := (Ř2,2)1−2,
�p := −Ř2,2�e3,
(q1, q2)

T := geodetic(N − 3,G, �p) with Algorithm 2.5,
�q := (q1, q2, 1)T,

end if;
solve the upper-triangular system Ř1,1(c, 2�b) = −Ř1,2�q;
change coordinates to �w := (1/

√
2)Z�q;

end if;
return conic(N, �x1, . . . , �xN) := (c, 2�b, �w, x).
STOP.

5. Perturbations of projected submatrices

Perturbing the data from an initial sequence �x1, . . . , �xN to a new sequence �x′
1, . . . ,

�x′
N also perturbs the matrix M̌ to a new matrix M̌ ′. Each such perturbation of the data
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decomposes into the sum of a translation of the mean �x := x′ − x and a difference
matrix �M̌2−3, which contains the perturbation of the centered data. Because the
singular values and the right-singular vectors of M̌2−3 form the principal semi-axes
of the distribution of the data [6, p. 278], their perturbations correspond to a rotation
and two dilations of the data. These perturbations then propagate from the parameters
�v, �w to �v′, �w′ through the orthogonal projection PM̌4−6 of M̌4−6 on R(M̌2−3). The
first theorem pertains to the norm of the composition of two projections.

Theorem 5.1. For all orthogonal projections P, P ′, if ‖P − P ′‖2 < 1, then

‖P⊥P ′‖2 = ‖P − P ′‖2 = ‖P ′P⊥‖2. (5.1)

Proof. A theorem of Kato’s [16, Chapter I, Theorem 6.34, pp. 56–58] asserts that
if ‖P − P ′‖2 < 1, then ‖P − P ′‖2 = ‖(I − P ′)P ‖2 = ‖(I − P)P ′‖2 = ‖P⊥P ′‖2.
The same inequalities hold for the complementary projections P⊥ = I − P and
P ′⊥ = I − P ′, because ‖(I − P) − (I − P ′)‖2 = ‖P − P ′‖2 < 1, whence ‖(I −
P) − (I − P ′)‖2 = ‖P(I − P ′)‖2 = ‖P ′(I − P)‖2 = ‖P ′P⊥‖2. �

For matrices G,G′ of rank r , the second theorem shows that the factor

κ̃(G) := σ1(G)

σr−1(G) − σr(G)
(5.2)

plays the role of a “condition number” [3, p. 38] for the perturbation ��vr := �vr (G′) −
�vr (G) of the last right-singular vector �vr (G).

Theorem 5.2. For all matrices G,G′ ∈ Mm×n(R) of rank r � min{m, n},
lim sup

‖�G‖2/‖G‖2→0

‖��vr‖2/‖�vr‖2

‖�G‖2/‖G‖2
� σ1(G)

σr−1(G) − σr(G)
. (5.3)

Proof. If θ denotes the angle between �vr and �v′
r , then Wedin’s generalized sin(θ)

theorem [27, p. 262;32, p. 102] applied to G := G1 + G0 := ∑r−1
i=1 σi �ui�vT

i + σr �ur �vT
r

and Kato’s theorem (in the form of Theorem 5.1) give∥∥P⊥
G′

1
− P⊥

G1

∥∥
2 =∥∥P⊥

G1
PG′

1

∥∥
2 = | sin(θ)|

� σ1(G)

σr−1(G) − σr(G)
· ‖�G‖2

‖G‖2
. (5.4)

Thus, if ‖�G‖2/‖G‖2 tends to 0, then so does | sin(θ)|, and |2 sin(θ/2)/ sin(θ)|
tends to 1. Moreover, ‖��vr‖2/‖�vr‖2 = 2 sin(θ/2) because ‖�vr‖2 = 1. Combining
these equalities with inequality (5.4) yields inequality (5.3). �

Theorems 5.1 and 5.2 together provide estimates of the perturbations of right-
singular vectors of the composition of a projection and another matrix. In the present
context, however, the perturbations of the data appear in M̌2−3 while the solution is
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a right-singular vector of P⊥M̌4−6. To make the transition from M̌2−3 to M̌4−6, the
following theorems relate perturbations of the data, recorded in �M̌2−3, to perturb-
ations of the variances and covariance, recorded in �M̌4−6. The proofs repeatedly
use the following consequences of the Cauchy-Schwartz inequality [14, p. 54]. For
every vector �z ∈ RN ,

‖�z‖2
1 :=

[
N∑
i=1

|zi |
]2

=
[

N∑
i=1

1 · |zi |
]2

�
N∑
i=1

12 ·
N∑
i=1

|zi |2 = N · ‖�z‖2
2. (5.5)

In particular, with N = 2, inequality (5.5) gives

(|p| + |q|)2 � 2(p2 + q2). (5.6)

The next theorem establishes bounds for the norms of the submatrices

M̌4−5 :=
 y̌2

1 − x̌2
1 2x̌1y̌1

...
...

y̌2
N − x̌2

N 2x̌N y̌N

 , M̌6 :=
 y̌2

1 + x̌2
1

...

y̌2
N + x̌2

N

 (5.7)

in terms of the norm of M̌2−3.

Theorem 5.3. With the notation defined by Eqs. (4.6), (4.7), (5.7),

‖M̌2−3‖2
F√

N
� ‖M̌4−6‖F = √

2‖M̌4−5‖F = √
2‖M̌6‖F � 2‖M̌2−3‖2

F. (5.8)

Proof. The proof uses the equalities ‖M̌4−6‖2
F = ‖M̌4−5‖2

F + ‖M̌6‖2
F and

‖M̌4−5‖2
F =

N∑
i=1

[
(y̌2

i − x̌2
i )

2 + 4y̌2
i x̌

2
i

] =
N∑
i=1

[
(y̌2

i + x̌2
i )

2] = ‖M̌6‖2
F. (5.9)

The upper bound in inequality (5.8) then follows from inequality (5.6) and

‖M̌6‖2
F =

N∑
i=1

(y̌2
i + x̌2

i )
2 (5.10)

�2
N∑
i=1

(y̌4
i + x̌4

i ) � 2
N∑
i=1

(y̌2
i + x̌2

i )
2 (5.11)

�2

[
N∑
i=1

(y̌2
i + x̌2

i )

]2

(5.12)

=2‖M̌2−3‖4
F. (5.13)

The lower bound in inequality (5.8) then follows from inequality (5.5) and inequality
(5.6) with zi := y̌2

i + x̌2
i = (M̌2−3)

2
i,1 + (M̌2−3)

2
i,2, which yield
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‖M̌2−3‖4
F =

[
N∑
i=1

(y̌2
i + x̌2

i )

]2

� N ·
N∑
i=1

[
(y̌2

i + x̌2
i )

2] (5.14)

�N ·
N∑
i=1

[
(y̌2

i − x̌2
i )

2 + 4y̌2
i x̌

2
i + (y̌2

i + x̌2
i )

2] (5.15)

=N · ‖M̌4−6‖2
F. � (5.16)

The following theorem establishes upper bounds for the perturbations.

Theorem 5.4. With the notation defined by Eqs. (4.6), (4.7), (5.7),

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖�M̌4−6‖2/‖M̌4−6‖2

‖�M̌2−3‖2/‖M̌2−3‖2
� 12N, (5.17)

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖�M̌6‖2/‖M̌6‖2

‖�M̌2−3‖2/‖M̌2−3‖2
� 2

√
2N, (5.18)

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖�M̌4−5‖2/‖M̌4−5‖2

‖�M̌2−3‖2/‖M̌2−3‖2
� 4

√
2N. (5.19)

Proof. The proof repeatedly uses the following inequalities, (5.20), (5.21). For every
matrix G ∈ Mm×n(R) with rank r [14, p. 57],

‖G‖2
2 = [σ1(G)]2 �

r∑
i=1

[σi(G)]2 = ‖G‖2
F � r[σ1(G)]2 = r‖G‖2

2. (5.20)

Moreover, for every entry Gk,� of every matrix G [28, p. 256, #(f)],

|Gk,�|2 �
m∑
i=1

|Gi,�|2 = �eT
�G

TG�e� � [σ1(G)]2 = ‖G‖2
2. (5.21)

From z2 − (z′)2 = (z − z′)(z + z′) and inequality (5.6) follows the inequality

‖�M̌6‖2
F =

N∑
i=1

[
(�y̌i)(y̌i + y̌′

i ) + (�x̌i)(x̌i + x̌′
i )
]2 (5.22)

�2
N∑
i=1

[
(�y̌i)

2(y̌i + y̌′
i )

2 + (�x̌i)
2(x̌i + x̌′

i )
2]. (5.23)
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Because lim
�M̌2−3→0 x̌

′
i = x̌i and lim

�M̌2−3→0 y̌
′
i = y̌i , (5.21) and (5.23) give

lim sup
‖�M̌2−3‖2
‖M̌2−3‖2

→0

‖�M̌6‖2
F

‖�M̌2−3‖2
F

� 8 max
k,�

|(M̌2−3)k,�|2 � 8‖M̌2−3‖2
2. (5.24)

Similarly, from xy − x′y′ = (x − x′)y + (y − y′)x′, the formulae for the entries

(�M̌4−6)
2
i,1 + (�M̌4−6)

2
i,2 = [

(�y̌i)(y̌i + y̌′
i ) − (�x̌i)(x̌i + x̌′

i )
]2

+ 4
[
(�y̌i)x̌i + (�x̌i)y̌

′
i

]2
, (5.25)

with lim
�M̌2−3→0 x̌

′
i = x̌i and lim

�M̌2−3→0 y̌
′
i = y̌i , and inequality (5.21), give

lim sup
‖�M̌2−3‖2
‖M̌2−3‖2

→0

‖�M̌4−5‖2
F

‖�M̌2−3‖2
F

� 8 max
k,�

|(M̌2−3)k,�|2 � 8‖M̌2−3‖2
2. (5.26)

Combining (5.20), (5.8), (5.24), with r = 1 for M̌6 leads to inequality (5.18). Like-
wise, combining (5.20), (5.8), (5.26), with r = 2 for M̌4−5 leads to inequality (5.19).
Moreover, combining inequalities (5.26) and (5.28) with

‖�M̌4−6‖2
F = ‖�M̌4−5‖2

F + ‖�M̌6‖2
F (5.27)

gives

lim sup
‖�M̌2−3‖2
‖M̌2−3‖2

→0

‖�M̌4−6‖2
F

‖�M̌2−3‖2
F

� 16 max
k,�

|(M̌2−3)k,�|2 � 16‖M̌2−3‖2
2. (5.28)

Hence inequalities (5.20), (5.16), (5.28) with r = 3 for M̌4−6 yield (5.17). �

Combining the foregoing results, the final theorem relates perturbations of the
data, in �M̌2−3, to perturbations of the projected marix P⊥M̌4−6.

Theorem 5.5. For the orthogonal projection P := P
M̌2−3

on R(M̌2−3),

lim sup
‖�M̌2−3‖2
‖M̌2−3‖2

→0

‖P ′⊥M̌ ′
4−6 − P⊥M̌4−6‖2/‖M̌4−6‖2

‖�M̌2−3‖2/‖M̌2−3‖2
� κ2,2(M̌2−3) + 12N.

(5.29)

Similar bounds hold for M̌4−5 and M̌6, with
√

8N and
√

32N instead of 12N.

Proof. Apply Wedin’s generalized sin(θ) theorem [27, p. 262;32, p. 102] to G :=
G1 + G0 := M̌2−3 + 0 in the form of Theorem 5.2, with ‖P⊥‖2 = 1:

‖P⊥ − P ′⊥‖2

‖P⊥‖2
� κ2,2(M̌2−3)

‖�M̌2−3‖2

‖M̌2−3‖2
. (5.30)
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The triangle inequality and the submultiplicativity of norms [16, p. 26] gives

‖P ′⊥M̌ ′
4−6 − P⊥M̌4−6‖2 �‖P ′⊥ − P⊥‖2 · ‖M̌4−6‖2

+ ‖P ′⊥‖2 · ‖M̌ ′
4−6 − M̌4−6‖2. (5.31)

Combining inequalities (5.30) and (5.31) gives

‖P ′⊥M̌ ′
4−6 − P⊥M̌4−6‖2

‖M̌4−6‖2
� κ2,2(M̌2−3)

‖�M̌2−3‖2

‖M̌2−3‖2
+ ‖�M̌4−6‖2

‖M̌4−6‖2
. (5.32)

Hence inequality (5.17) in Theorem 5.4 yields inequality (5.29). Similar bounds for
M̌4−5 and M̌6 follow from Theorem 5.4 in the same manner. �

6. Perturbation analysis for fitted conics

By Golub et al.’s theorem [13], �w is a right-singular vector for the smallest sin-
gular value of Ř2,2, or of any matrix representing––relative to any bases––the or-
thogonal projection of M̌4−6 on the orthogonal complement of the range of M̌1−3 =
[M̌1; M̌2−3]. However, perturbations of the data do not affect the constant first col-
umn M̌1 = �1. To separate M̌1 from the submatrix M̌2−3 subject to perturbations, let
H ∈ MN×N(R) denote the Householder reflection [14, p. 196] that maps �1 ∈ RN

to −√
N�e1 ∈ RN . Because H is orthogonal, and because M̌1 = �1 and M̌2−3 are

mutually orthogonal, so are H(�1) and H(M̌2−3), so that H(M̌1−3) has the form

H(M̌1−3) =
[(−√

N
�0

)
H(M̌2−3)

]
. (6.1)

Moreover, for each vector �h ∈ RN with mean h := (1/N)
∑N

i=1 hi , because �1 ⊥
�h − h�1 it follows that −√

N�e1 = H(�1) ⊥ H(�h − h�1) = (0, ∗, . . . , ∗)T:

H(�h) =
(−√

Nh
�0

)
+ H(�h − h�1). (6.2)

In particular, P⊥
�1 M̌4−6 forms rows 2 through N of H(M̌4−6):

H(M̌) =
[(−√

N
�0

)
H(M̌2−3)

(
P�e1H(M̌4−6)

P⊥
�e1
H(M̌4−6)

)]
. (6.3)

In (6.1)–(6.3), the first row of H(M̌2−3) and H(�h − h�1) is zero. Because the re-
flection H does not depend on the data, subtracting from M̌4−6 its projection on
R(M̌2−3) amounts to subtracting from P⊥

�e1
H(M̌4−6) its projection on R(H(M̌2−3)).

Consequently, perturbation analyses for �w may restrict themselves to perturbations
of the projection P⊥ on R(M̌2−3)

⊥.
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Theorem 6.1. With the notation defined by Eqs. (4.6), (4.7), (5.2),

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖��w‖2/‖�w‖2

‖�M̌2−3‖2/‖M̌2−3‖2

� [κ2,2(M̌2−3) + 12N]κ̃(Ř2,2)
σ1(M̌4−6)

σ1(Ř2,2)
. (6.4)

Proof. Because �w = �v3(Ř2,2) = �v3(P
⊥M̌4−6) Theorem 5.2 gives

lim sup
‖�(P⊥M̌4−6)‖2/‖P⊥M̌4−6‖2→0

‖��w‖2/‖�w‖2

‖�(P⊥M̌4−6)‖2/‖P⊥M̌4−6‖2

� σ1(P
⊥M̌4−6)

σr−1(P⊥M̌4−6) − σr(P⊥M̌4−6)
. (6.5)

Also, Theorem 5.5 gives

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖�(P⊥M̌4−6)‖2/‖P⊥M̌4−6‖2

‖�M̌2−3‖2/‖M̌2−3‖2

� [κ2,2(M̌2−3) + 12N] · ‖M̌4−6‖2

‖P⊥M̌4−6‖2
. (6.6)

The result (6.4) follows from inequalities (6.5) and (6.6). �

The perturbations ��w := �w′ − �w and �Ř1,2 := Ř′
1,2 − Ř1,2 then induce a per-

turbation ��y := −Ř′
1,2 �w′ + Ř1,2 �w in the linear system Ř1,1�v = −Ř1,2 �w, or, equiv-

alently, QTHM̌1−3�v = −QTHM̌4−6 �w. While ‖�w‖2 = 1 by design, �v may be zero.
Therefore, the following theorem uses the size of the data, ‖M̌2−3‖2 and ‖M̌4−6‖2,
as measures of scale for the affine term �v. The first theorem gives estimates for the
perturbations of the right-hand side M̌4−6 �w.

Theorem 6.2. With the notation defined by Eqs. (4.6), (4.7), (5.2),

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖�(M̌4−6 �w)‖2/‖M̌4−6‖2

‖�M̌2−3‖2/‖M̌2−3‖2
(6.7)

� [κ2,2(M̌2−3) + 12N]κ̃(Ř2,2)
σ1(M̌4−6)

σ1(Ř2,2)
+ 12N. (6.8)

Proof. With ‖�w‖2 = 1 = ‖�w′‖2, the proof uses the following relations:

�(M̌4−6 �w) = M̌4−6(�w′ − �w) + (M̌ ′
4−6 − M̌4−6)�w′, (6.9)
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‖�(M̌4−6 �w)‖2

‖M̌4−6‖2
� ‖��w‖2

‖�w‖2
+ ‖�M̌4−6‖2

‖M̌4−6‖2
. (6.10)

Hence, Theorems 5.5 and 6.1 give inequality (6.8). �

The second theorem bounds the perturbation of the constant term.

Theorem 6.3. With the notation defined by Eqs. (4.6), (4.7), (5.2),

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

|�c|/‖M̌4−6‖2

‖�M̌2−3‖2/‖M̌2−3‖2
(6.11)

� [κ2,2(M̌2−3) + 12N] κ̃(Ř2,2)√
N

σ1(M̌4−6)

σ1(Ř2,2)
+ 12

√
N. (6.12)

Proof. From the block-matrix form of HM̌1−3 in Eq. (6.1), the equation for the
constant c, which adjusts the scale of the fitted conic, becomes

−√
Nc = (HM̌1−3�v)1 = −(HM̌4−6 �w)1. (6.13)

Inequality (6.8) then gives inequality (6.12). �

The third theorem bounds the perturbation of the linear term.

Theorem 6.4. With the notation defined by Eqs. (4.6), (4.7), (5.2),

lim sup
‖�M̌2−3‖2/‖M̌2−3‖2→0

‖��b‖2/‖M̌2−3‖2

‖�M̌2−3‖2/‖M̌2−3‖2

� 2Nκ2,2(M̌2−3)

[
κ2,2(M̌2−3)

+1

4

{[
κ2,2(M̌2−3) + 12N

]
κ̃(Ř2,2)

σ1(M̌4−6)

σ1(Ř2,2)
+ 12N

}]
. (6.14)

Proof. The solution �v is also the solution of the ordinary least-squares system
HM̌1−3�v = −HM̌4−6 �w. Because �b involves only the lower right 2 × 2 block HM̌2−3
of HM̌1−3, and because M̌2−3 has full rank, another theorem of Wedin’s [33, p. 224,
Theorem 5.1] gives

‖��b‖2 � κ(M̌2−3)

1 − κ(M̌2−3)
‖�M̌2−3‖2

‖M̌2−3‖2

[
‖�M̌2−3‖2

‖M̌2−3‖2
‖�b‖2 + ‖�(M̌4−6 �w)‖2

‖M̌2−3‖2

]
, (6.15)

where ‖M̌2−3‖2
2 � ‖M̌2−3‖F/N � (1/2)‖M̌4−6‖F/N � (1/2)‖M̌4−6‖2/N by The-

orem 5.3, and where ‖�b‖2 = ‖M̌†
2−3M̌4−6 �w‖2 � κ2,2(M̌2−3)2N‖M̌2−3‖2. Hence,

inequality (6.8) yields inequality (6.14). �
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Geometric interpretation for fitted conics. The perturbation bounds in Theorem
6.1 for �w, determining the type of the fitted conic, Theorem 6.3 for c, determining
its size, and Theorem 6.4 for �b, determining its center, all contain the two condition
numbers κ2,2(M̌2−3) and κ̃(Ř2,2).

The factor κ̃(Ř2,2) = κ̃(P⊥M̌4−6) diverges to infinity if and only if σ2(Ř2,2)

tends to σ3(Ř2,2). Then �v2(Ř2,2) approaches �w = �v3(Ř2,2), and at the limit any
�w ∈ span{�v2, �v3} defines the parameters of an equally well fitting conic with the
same residual σ2(Ř2,2) = σ3(Ř2,2). Meanwhile the data near every conic and also
the intersection of the pencil spanned by �v2(Ř2,2) and �v3(Ř2,2).

Because 1/κ2,2(M̌2−3) measures the degree of colinearity of the data [14, p. 247],
the leading factors κ2,2(M̌2−3) reveals that the sensitivity of the fitted conic also in-
creases as does the colinearity of the data. Thus, instead of a factor κ(M̌) that would
occur with the complete factorization M̌ = Q̌Ř, the factor κ2,2(M̌2−3) corroborates
a remark by Pratt, who had already observed the instability of conics fitted to nearly
colinear data [21, p. 149].

7. Perturbation analysis for fitted parabolae

With ψ(λ) := [1 − ϕ(λ)]∏2
i=1(σ

2
i − λ)2, the secular equation (2.8) becomes

0 = ψ(λ) :=
2∏

i=1

(σ 2
i − λ)2 −

2∑
i=1

σ 2
i y

2
i

∏
j /=i

(σ 2
j − λ)2 (7.1)

=:λ4 + ψ3λ
3 + ψ2λ

2 + ψ1λ + ψ0. (7.2)

For the constrained problem for parabolic conics, perturbations of the data change
the singular values of the matrix G := P⊥M̌4−5 = (Ř2,2)1−2, which affects the co-
efficients ψ0, . . . , ψ3 of the polynomial secular equation (7.2) hence also its optimal
solution λ∗, which thence perturbs the Lagrangian equation (2.3) and the solution
�w∗ = (1/

√
2)Z�q∗ = (1/

√
2)ZV �z∗.

The sensitivity of an isolated optimal solution λ∗ of the monic polynomial secular
equation (7.2) to perturbations of the coefficient ψk of λk is inversely proportional to
the derivative at that solution [28, pp. 303–306;34, p. 11, Eq. (5.1)], as follows from
the implicit-function theorem [9, p. 148]:

∂λ∗
∂ψk

= −λk∗
ψ ′(λ∗)

, (7.3)

which tends to infinity as the two smallest solutions λ∗ < σ 2
k < λ3 coalesce. As in

theorem 2.3, ψ ′(λ∗) = 0 = ψ(λ∗) if and only if λ∗ = σ 2
2 , in which case σ 2

2 − λ∗ is
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also a vanishing singular value of the matrix L := �T� − λ∗I in system (2.3), and
then the sensitivity of �w to perturbations is infinite.

If λ∗ < σ 2
2 , then L is invertible and �z solves system (2.3), L�z = �r := GT�p. If also

(L + �L)(�z + ��z) = �r + ��r, then [1, pp. 606–607, Theorem A.13′]
‖��z‖
‖�z‖ � κ(L)

1 − κ(L)‖�L‖/‖L‖
(‖�L‖

‖L‖ + ‖��r‖
‖�r‖

)
, (7.4)

where L = GTG − λ∗I and G = P⊥M̌4−5 = (Ř2,2)1−2, so that

κ2,2(L) = σ 2
1 (P

⊥M̌4−5) − λ∗
σ 2

2 (P
⊥M̌4−5) − λ∗

. (7.5)

Yet �r can be zero, which can cause further instabilities in the solution �z∗.
Geometric interpretation for fitted parabolae. As in Theorem 2.3, the extreme

sensitivities caused by a double root of the secular equation arise only if 0 = σ2y2 =
(UTP⊥M̌6)2, which is a vanishing condition for the moments, or a measure of sym-
metry, of the distributon of the data. For instance, if the second principal moments
equal each other, and if all the third principal moments vanish, then the condition
0 = σ2y2 = (UTP⊥M̌6)2 still requires the vanishing of the fourth moments.

Indeed, after a rotation of the coordinates to the right-singular vectors of M̌2−3,
which are also the principal inertial axes of the data, the mixed moments vanish
[6, p. 278], so that

∑2
i=1 x̌i y̌i = 0, which also means that the columns of M̌2−3 are

mutually perpendicular, so that Ř1,1 is diagonal.
If the distribution is also centrally symmetric about its mean, so that x̌i and −x̌i

are both in the data, then all the odd-degree moments vanish, in particular, the dot
products M̌2 • M̌5 = ∑2

i=1 x̌
2
i y̌i = 0 = ∑2

i=1 x̌i y̌
2
i = M̌3 • M̌5, and similarly M̌2 •

M̌6 = 0 = M̌3 • M̌6. Thus M̌5 ⊥ M̌1−3 and M̌6 ⊥ M̌1−3. If also the principal second
moments are equal, then

∑2
i=1 x̌

2
i = ∑2

i=1 y̌
2
i , and hence also M̌4 ⊥ M̌1−3. In such

a case, M̌6 ⊥ M̌4−5. if and only if

M̌4 • M̌6 = 0=
2∑

i=1

x̌i y̌i (x̌
2
i + y̌2

i ), (7.6)

M̌5 • M̌6 = 0=
2∑

i=1

(x̌2
i − y̌2

i )(x̌
2
i + y̌2

i ) (7.7)

=
2∑

i=1

(x̌4
i − y̌4

i ) (7.8)

Thus the fourth principal moments must also equal each other.
After the computation of the quadratic coefficients �w, the same linear system

Ř1,1�v = −Ř1,2 �w as in Section 6 yields the affine coefficients �v, which are thus again
unstable if the data are nearly colinear.
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8. Applications

8.1. Fitting a hyperbola

Bookstein [4], Gander et al. [12, p. 564], Pratt [21], Späth [24,25], and Van Loan
[29, pp. 302–305] offer algorithms, which, in principle, can fit hyperbolae with axes
that are not necessarily parallel to the coordinate axes. However, they do not provide
any such example or application. The example provided here illustrates Algorithm
4.1 to fit hyperbolae.

The problem of fitting a conic to data arises in the study of sundials, for instance,
in the measurement of due north, or in the determination of the latitude and orienta-
tion of ancient sundials, as explained by James Evans:

Local noon is the time of day when the shadow of a vertical gnomon is
shortest. [. . .] Local noon need not occur at twelve o’clock [because of the
inclination of the ecliptic]. The direction in which the shortest shadow points
is called north. [. . .] As it is difficult to tell exactly when the shadow is short-
est, let us consider an alternative procedure. Sketch a smooth curve through
the points of the shadow-plot. [. . .]––[8, pp. 27–28].

Evans does not specify the type of curve to be fitted, but the shadow of the tip of a
gnomon traces a conic on a planar sundial [15, pp. 84–86]. On horizontal sundials
located between the southern and northern artic circles, the shadow traces a branch
of a hyperbola [31, p. 137], with asymptotes pointing toward the sunrise and sunset.
Along each artic circle, the shadow can also trace a parabola on the summer soltice,
and within either artic region, the shadow can also trace an ellipse during midnight
suns.

Example 8.1. Fig. 3 reproduces the base of a sundial with shadows plotted by Evans
in Seattle, about at latitude 47◦50′ north [8, p. 27, Fig. 1.6]. If the shadow-plot still
lies as it did during the plotting operations, then due north lies along the direction
from the gnomon to the shortest shadow, which has not been plotted. Therefore,
finding due north on this shadow-plot amounts to locating the vertex of a hyperbola
passing through, or fitted to, the plotted points.

Evans’ data do not include any coordinates, which again justifies the require-
ment that the fitting algorithm remain invariant under rotations, symmetries, and

Fig. 3. Shadows (•) of the tip of a gnomon (+), from 8:23 AM (left) to 4:53 PM (right), adapted from
Evans [8, p. 27, Fig. 1.6].
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Table 1
Coordinates measured off [8, p. 27, Fig. 1.6], in [mm] (±0.25)

xi −34.75 −22 −15.5 −8.0 −4 −1.0 1.5 4.5 9.25 17 23.5 36 64.5
yi 20.25 17 15.0 13.5 13 12.5 12.5 13.0 14.00 16 18.0 21 29.5
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Fig. 4. Hyperbola fitted to shadows coordinates measured off a grid.

translations of coordinates. Thus Table 1 lists the coordinates of the shadows mea-
sured off a Cartesian grid superimposed on Evans’s data. Fig. 4 shows this grid, and
the best fitting conic section––a hyperbola––from Algorithm 4.1. To a few significant
digits, the fitted hyperbola has its center at (0.126, 10.6), and the principal semi-axes
have lengths 7.09 and 1.99; they point in the directions (0.999955, 0.00950672) and
(−0.00950672, 0.999955), which indicates that the sundial was oriented nearly along
the north–south and east–west directions.

For these data, the condition numbers are (rounded to a few digits)

1

κ2,2(M̌2−3)
= σ2(M̌2−3)

σ1(M̌2−3)
= 13.2809

90.1900
= 0.147254, (8.1)

κ2,2(M̌2−3) = σ1(M̌2−3)

σ2(M̌2−3)
= 90.1900

13.2809
= 6.79097, (8.2)

κ̃(Ř2,2) = σ1(Ř2,2)

σ2(Ř2,2) − σ3(Ř2,2)
= 1087.26

217.622 − 7.27432
= 5.17. (8.3)

The reciprocal 1/κ2,2(M̌2−3) = 0.15 indicates that M̌2−3 is not numerically singu-
lar [14, p. 247], and hence that the data are not colinear. The condition numbers
κ2,2(M̌2−3) = 6.8 and κ̃(Ř2,2) = 5.2 indicate a moderate sensitivity of the fitted hy-
perbola to perturbations of the data.

8.2. Fitting a parabola

The next example compares Algorithm 4.1 for parabolae with other algorithms
and test-data from the literature.
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Table 2
Test data on a parabola, from Späth [23, p. 268]

xi −6.6 −2.8 −0.2 0.4 1.2 1.4
yi 8.8 5.4 3.6 7.8 3.4 4.8

Table 3
Test data near a parabola, from Späth
[23, p. 268]

xi −7 −3 0 0 1 1
yi 9 5 4 8 3 5

Example 8.2. Späth reports several difficulties in fitting parabolae by parametric
least squared orthogonal distances: at each of about 100 iterations, his algorithm
requires solving and testing all three solutions of a separate cubic equation for each
data point, different starting values can lead to different local minima, and conver-
gence to a global minimum is not guaranteed [23].

In contrast, for each of Späth’s data sets, Algorithm 4.1 produces only one pa-
rabola. For data on a parabola, in Table 2, Algorithm 4.1 reproduces that parabola,
and for data near a parabola, in Table 3, the same algorithm produces a parabola
which appears to fit the data closely, as shown in Fig. 5. (The publication [23, p. 268,
Example 3] does not provide the angle of rotation of the parabola fitted there, which
precludes its inclusion in Fig. 5.)

To the same data near a parabola, in Table 3, Bookstein’s constraint ‖�w‖2 = 1
alone––without the constraint det(A) = 0––does not yield a parabola, but instead
produces the ellipse shown in Fig. 6 as the best fitting conic. The conic corresponding
to the next smaller singular value is the hyperbola shown in Fig. 6. Therefore, to
insist on fitting a parabola, the constraint det(A) = 0 has to be activated. In other
words, the algorithms just presented (2.4, 2.5, 4.1) provide a means that was hitherto
not available for fitting parabolae to data algebraically.

For the data on the parabola, in Table 2, the condition numbers are

1

κ2,2(M̌2−3)
= σ2(M̌2−3)

σ1(M̌2−3)
= 3.25264

7.85835
= 0.413909, (8.4)

κ2,2(M̌2−3)= σ1(M̌2−3)

σ2(M̌2−3)
= 7.85835

3.25264
= 2.415991, (8.5)

which suggest a moderate sensitivity of the fitted parabola to perturbations. For the
polynomial secular equation, computations produce

λ∗ = −0.102179 · 10−5, |ψ(λ∗)| < 10−12, ψ ′(λ∗) = −1382084.5,
(8.6)
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Fig. 5. Parabolae fitted by Algorithm 4.1 to Späth’s data [23, p. 268].
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Fig. 6. Ellipse (· · ·) and hyperbola (−−) fitted by Bookstein’s method, and parabola (−) fitted by Algo-
rithm 4.1, to Späth’s data [23, Example 3].

so that ∂λ/∂ψ0 = −1/ψ ′(λ∗) = 7.23545 × 10−7 and, for the system (2.3)

κ2,2(L) = σ 2
1 − λ∗

σ 2
2 − λ∗

= 16.77482 + 1.02179 × 10−6

4.353042 + 1.02179 × 10−6
= 14.9, (8.7)

also indicating a moderate sensitivity of the fitted parabola to perturbations.
For the data near the parabola, in Table 3, the parabola fitted by Algorithm 4.1

admits the parametrization

�p(t) =
(−4/3

17/3

)
+
(

.826 .564
−.564 .826

)(
t

[(t − .278)2 − 3.31]/1.05

)
. (8.8)

The condition numbers are

1

κ2,2(M̌2−3)
= σ2(M̌2−3)

σ1(M̌2−3)
= 3.36528

8.08341
= 0.4163198, (8.9)
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κ2,2(M̌2−3) = σ1(M̌2−3)

σ2(M̌2−3)
= 8.08341

3.36528
= 2.402004. (8.10)

For the polynomial secular equation, computations produce

λ∗ = 2.77003, |ψ(λ∗)| < 10−12, ψ ′(λ∗) = −1906306.1, (8.11)

so that ∂λ/∂ψ0 = −1/ψ ′(λ∗) = 5.24575 × 10−5 and, for the system (2.3)

κ2,2(L) = σ 2
1 − λ∗

σ 2
2 − λ∗

= 18.18562 − 2.77003

4.727492 − 2.77003
= 16.75, (8.12)

also indicating a moderate sensitivity of the fitted parabola to perturbations.
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