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�is brief note contains a result about curves, lines, and slopes which I have
derived. �e result is important to nomography, but doesn’t require knowledge of
nomography to understand.

First, suppose you have two curves in space: γ1, γ2 : R→ R2. Each curve maps
a parameter (you might think of it as “time”) to a particular position in space. Now, I
can specify any two values—call them u and v—and plot the points γ1(u) and γ2(v).
(“Locate the �rst curve at time u, and locate the second curve at time v”.) Assuming
the curves are well-behaved (e.g. they don’t intersect), I can then draw the line in the
plane between the points γ1(u) and γ2(v). And I can draw such a line for any two
values u and v. Hence I can treat that line as a function of u and v, le�ing A(u, v)
be the slope of the line and le�ing B(u, v) be the y-intercept.

�e �rst question is: if you have forgo�en the curves γ1(u) and γ2(v), but you
have all the information about such lines, namely slope A(u, v) and y-intercept
B(u, v), can you uniquely recover the curves γ1 and γ2? As I will show, you can
indeed uniquely recover the curves.

Now for the second question. Suppose in addition to the curves γ1(u) and γ2(v),
now you have a third curve γ3(w) with an interesting property. As before, for any
u and v you can draw the line joining γ1(u) and γ2(v). �e curve γ3(w) has the
property that time you draw a line connecting γ1(u) to γ2(v), it will intersect the
curve γ3 somewhere; we can refer to the value of w at which this occurs as ŵ(u, v).
�en our assumption is: for any u and v, the point γ3(ŵ(u, v)) always lies on the
line joining γ1(u) and γ2(v). �e question is if all we know is A(u, v) and B(u, v)
and ŵ(u, v), can we now uniquely recover this third curve γ3(w)? Again, I will show
that you can indeed uniquely recover the third curve.

We have the following theorem:

1 �eorem Suppose you are given the slope �eld A(u, v) and the intercept �eld
B(u, v) for a pair of curves γ1(u) and γ2(v). (�at is, for each pair of points u and
v, A(u, v) represents the slope and B(u, v) represents the y-intercept of the line
between γ1(u) and γ2(v).) �en, except in extreme edge cases, you can uniquely
recover γ1 and γ2 given only A(u, v) and B(u, v).
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Proof. �e proof is by a simple geometric construction: for each value u, we pick
two di�erent values v0 and v1. We know the slope and intercept of the line joining
γ1(u) and γ2(v0) and the line joining γ1(u) and γ2(v1). Hence we plot those two
lines; if they intersect at all, it will be at a unique point which yields γ1(u). �is is
enough to establish the proof.

�is argument assumes that we can �nd v0 and v1 such that the resulting lines
actually intersect at one point (i.e. are not parallel). But in fact, these curves are
nomographic and so they must be well-behaved. In particular, they ought to have
the following property: “changing one of the values u v must necessarily change the
line between them”. We describe this property formally by saying that the Jacobian
∂(A,B) ≡ ∂A

∂u
∂B
∂v −

∂A
∂v

∂B
∂u is nonzero everywhere. �is property is enough to

guarantee that for every u, v0 pair, there exists a v1 near to v0 which yields a di�erent
line.

We have just proved that we can recover the two curves γ1(u) and γ2(v) uniquely
from their slope and intercept �elds. Next, I’ll show how we can also uniquely re-
cover the third curve, γ3(w), given only the slope A(u, v) and intercept B(u, v)
�elds for the other two curves. Note that if F (u, v, w) = 0 is nomogramable,
then presumably it has the following property: changing any one of the parame-
ters by itself changes the value of F . (�is need not necessarily be true, e.g. when
F (u, v, w) = uv − w at u = 0, but it should o�en be true.) In this case, the par-
tial derivatives of F are nonzero everywhere, and the implicit function theorem says
that the relation F (u, v, w) = 0 implicitly de�nes w as a function of u and v—call it
ŵ(u, v)—and that this function is (locally) unique!

Using ŵ, we have the following result:

2 �eorem Suppose you are given the slope �eld A(u, v) and the intercept �eld
B(u, v) for a pair of curves γ1(u) and γ2(v). You are also given the function ŵ(u, v)
which de�nes w as a function of u and v. �en, except in extreme edge cases, you
can uniquely recover γ3 ◦ ŵ (this is γ3 expressed as a function of u and v.)

Speci�cally, if we use the notation γi ≡ 〈fi, gi〉 so we can refer to the individual
coordinates of the curves, we have that γ3 ◦ ŵ is uniquely de�ned by the equations:

(f3 ◦ ŵ)(u, v) = −
∂(B, ŵ)

∂(A, ŵ)

(g3 ◦ ŵ)(u, v) = B −A∂(B, ŵ)
∂(A, ŵ)

Here, I am using the shorthand notation ∂(f, g) for the Jacobian determinant
∂f
∂u

∂g
∂v −

∂f
∂v

∂g
∂u .

Proof. In brief, if you can �nd two pairs of values 〈u, v〉 and 〈u′, v′〉 which yield the
same value w, you can plot the two lines and �nd γ3 ◦ ŵ as their unique point of in-
tersection. In this proof, I use the derivatives of ŵ to �nd such pairs of points for any
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w. �en I use the standard equation for line-line intersection to compute that inter-
section point. �rough some clever algebra, I manipulate the resulting expressions
to express them solely in terms of A, B, and ŵ.

Let’s �x a particular value 〈u, v〉 and corresponding w ≡ ŵ(u, v). We must �nd
another value 〈u′, v′〉 such that ŵ(u′, v′) = w = ŵ(u, v).

It turns out that if the partial derivatives of F are nonzero everywhere, then so
are the partial derivatives of ŵ. �is implies that the gradient of ŵ(u, v) is nonzero
everywhere. But if you travel in u − v space perpendicular to the gradient, then ŵ
will remain locally constant. Hence, if you have a value 〈u, v〉, you can �nd another
nearby value 〈u′, v′〉 which yields the same value of w, by traveling a short distance
away from 〈u, v〉 in a direction perpendicular to the gradient.

For concreteness, one such direction perpendicular to the gradient of ŵ is ~n ≡
〈∂ŵ∂v ,−

∂ŵ
∂u 〉.�is choice of direction de�nes our second pair as:

u′ = u+ ε
∂ŵ

∂v

v′ = v − ε∂ŵ
∂u

where we require ε, the step size, to be very small. (We will be taking the limit
ε→ 0 later.)

Now that we have 〈u, v〉 and 〈u′, v′〉, we have two lines: the one de�ned by
A(u, v) and B(u, v), and the one de�ned by A(u′, v′) and B(u′, v′). Of course the
intersection of those lines will be at γ3(w), i.e. at the point 〈f3 ◦ ŵ, g3 ◦ ŵ〉, which
is what we want to �nd. Evidently, if the point of intersection is unique, then that
particular point of γ3(w) is uniquely de�ned by A, B, and ŵ.

�ere is a well-known expression for �nding the intersection of two lines using
determinants. It’s rather complicated, so I won’t reproduce it here. Into that ex-
pression, we plug in our four points 〈f1(u), g1(u)〉, 〈f2(v), g2(v)〉, 〈f1(u′), g1(u′)〉,
〈f2(v′), g2(v′)〉. �is yields a complicatedmess. To simplify, we de�ne new functions

P (u, v) ≡ f1(u)− f2(v)
Q(u, v) ≡ f1(u)g2(v)− g1(u)f2(v)
R(u, v) ≡ g1(u)− g2(v)

With those substitutions, the equation for the intersection of our two lines be-
comes much more manageable:

(f3 ◦ ŵ) = lim
ε→0

Q(u, v)P (u′, v′)− P (u, v)Q(u′, v′)

P (u, v)R(u′, v′)−R(u, v)P (u′, v′)

(g3 ◦ ŵ) = lim
ε→0

Q(u, v)R(u′, v′)−R(u, v)Q(u′, v′)

P (u, v)R(u′, v′)−R(u, v)P (u′, v′)
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Our next plan is to make the numerators and denominators look more like dif-
ference quotients, i.e. roughly like h(x+ε)−h(x)

ε , so that when we take the limit, we
will get a bunch of derivatives.

To do so, we simply add and subtract some extra stu� from each numerator and
denominator:

(f3 ◦ ŵ) = lim
ε→0

Q(u, v)P (u′, v′) + [Q(u, v)P (u, v)−Q(u, v)P (u, v)]− P (u, v)Q(u′, v′)

P (u, v)R(u′, v′) + [P (u, v)R(u, v)− P (u, v)R(u, v)]−R(u, v)P (u′, v′)

(g3 ◦ ŵ) = lim
ε→0

Q(u, v)R(u′, v′) + [Q(u, v)R(u, v)−Q(u, v)R(u, v)]−R(u, v)Q(u′, v′)

P (u, v)R(u′, v′) + [P (u, v)R(u, v)− P (u, v)R(u, v)]−R(u, v)P (u′, v′)
We consolidate terms neatly, yielding:

(f3 ◦ ŵ) = − lim
ε→0

P (u, v) [Q(u′, v′)−Q(u, v)]−Q(u, v) [P (u′, v′)− P (u, v)]
P (u, v) [R(u′, v′)−R(u, v)]−R(u, v) [P (u′, v′)− P (u, v)]

(g3 ◦ ŵ) = lim
ε→0

Q(u, v) [R(u′, v′)−R(u, v)]−R(u, v) [Q(u′, v′)−Q(u, v)]

P (u, v) [R(u′, v′)−R(u, v)]−R(u, v) [P (u′, v′)− P (u, v)]

�en we divide numerator and denominator by ε:

(f3 ◦ ŵ) = − lim
ε→0

P (u, v)Q(u′,v′)−Q(u,v)
ε −Q(u, v)P (u′,v′)−P (u,v)

ε

P (u, v)R(u′,v′)−R(u,v)
ε −R(u, v)P (u′,v′)−P (u,v)

ε

(g3 ◦ ŵ) = lim
ε→0

Q(u, v)R(u′,v′)−R(u,v)
ε −R(u, v)Q(u′,v′)−Q(u,v)

ε

P (u, v)R(u′,v′)−R(u,v)
ε −R(u, v)P (u′,v′)−P (u,v)

ε

We are now ready to evaluate the limit as ε→ 0; when we do, we will get several
partial derivatives.

Side remark: I should like to point out that in general, if h(u, v) is any
two-variable function and n̂ is any two-dimensional unit vector, then
the partial derivative of h in the direction n̂ is given by the limit

∂n̂h(~u) = lim
ε→0

h(~u+ εn̂)− h(~u)
ε

which is exactly the sort of thing we have going on in our expressions
for (f3 ◦ ŵ) and (g3 ◦ ŵ) because we de�ned 〈u′, v′〉 = 〈u, v〉 + ε~n.
Another way of writing the partial derivative of h in the direction n̂ is
as a dot product of n̂ with the gradient of h:

∂n̂h(~u) = lim
ε→0

h(~u+ εn̂)− h(~u)
ε

= ∇h · n̂ =

〈
∂h

∂u
,
∂h

∂v

〉
· 〈n̂x, n̂y〉 .
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When we evaluate the limit, we get1:

(f3 ◦ ŵ) = −
P (u, v)(∇Q · ~n)−Q(u, v)(∇P · n)
P (u, v)(∇R · ~n)−R(u, v)(∇P · ~n)

(g3 ◦ ŵ) =
Q(u, v)(∇R · ~n)−R(u, v)(∇Q · n)
P (u, v)(∇R · ~n)−R(u, v)(∇P · ~n)

Recall that we de�ned ~n ≡ 〈∂ŵ∂v ,−
∂ŵ
∂u 〉. Hence when we evaluate a term like

∇Q · ~n, we get

∇Q · ~n =

〈
∂Q

∂u
,
∂Q

∂v

〉
·
〈
∂ŵ

∂v
,−∂ŵ

∂u

〉
=
∂Q

∂u

∂ŵ

∂v
− ∂Q

∂v

∂ŵ

∂u
.

�e expression on the far right is called the Jacobian of Q and ŵ, and I’ll write
it in shorthand as ∂(Q, ŵ). �e same reasoning we used to discover that ∇Q · ~n =
∂(Q, ŵ) applies to the other functions P and R. Hence we have:

(f3 ◦ ŵ) = −
P (u, v) ∂(Q, ŵ)−Q(u, v) ∂(P, ŵ)

P (u, v) ∂(R, ŵ)−R(u, v) ∂(P, ŵ)

(g3 ◦ ŵ) = −
Q(u, v) ∂(R, ŵ)−R(u, v) ∂(Q, ŵ)
P (u, v) ∂(R, ŵ)−R(u, v) ∂(P, ŵ)

I note that each numerator and denominator looks sort of like the quotient rule
for derivatives. If you try to derive a quotient rule for Jacobians, you get the follow-
ing:

∂(f/g, h) =
g ∂(f, h)− f ∂(g, h)

g2

or, how I like to put it,

g ∂(f, h)− f ∂(g, h) = g2 ∂(f/g, h).

Applying this quotient rule to the numerators and to the denominators, we ob-
tain:

(f3 ◦ ŵ) = −
��P 2 ∂(Q/P, ŵ)

��P 2 ∂(R/P, ŵ)

(g3 ◦ ŵ) =
Q2 ∂(R/Q, ŵ)

P 2 ∂(R/P, ŵ)

1It’s not a problem that our vector ~n ≡ 〈 ∂ŵ
∂v

,− ∂ŵ
∂u
〉 is not normalized: we can factor out the length

in the numerator and in the denominator, and so consequently it cancels out.
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Now comes the truly exciting part. Observe that by de�nition,

A(u, v) =
R(u, v)

P (u, v)

B(u, v) =
Q(u, v)

P (u, v)

Hence R
P = A, QP = B, and R

Q = R
P
P
Q = A

B . With these substitutions, we �nd
that:

(f3 ◦ ŵ) = −
∂(B, ŵ)

∂(A, ŵ)

(g3 ◦ ŵ) = B2 ∂(A/B, ŵ)

∂(A, ŵ)

We can simplify the expression for (g3◦ŵ) one �nal time by using another appli-
cation of the quotient rule for Jacobians. Speci�cally,B2 ∂(A/B, ŵ) = B ∂(A, ŵ))−
A∂(B, ŵ).

Hence we arrive at our �nal result:

(f3 ◦ ŵ) = −
∂(B, ŵ)

∂(A, ŵ)

(g3 ◦ ŵ) =
B ∂(A, ŵ)−A∂(B, ŵ)

∂(A, ŵ)
= B −A ∂(B, ŵ)

∂(A, ŵ)

�is equation is neat because the equation for (f3 ◦ ŵ), the x-coordinate of γ3,
looks analogous to the equation for �nding the x-intercept of a line y = Ax + B.
Similarly, if you substitute the equation for f3 into the equation for (g3ŵ), you get
the actual equation of the line (g3 ◦ ŵ) = A(f3 ◦ ŵ) +B.

6


