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�e language of relations in mathematics gives a formal way to talk about various
relationships between things, such as the “is greater than or equal to” relationship be-
tween numbers, or the “is a child of” relationship between people, or the “is adjacent
to” relationship between countries. �is language allows you to build new relations
out of existing ones and to highlight special properties of relations (for example, the
symmetry of a relationship like siblinghood).

One exciting possibility is applying this relational language to the relations in
human relationships. In this article, I show howmany familiar properties of relation-
ships can be expressed succinctly in standard relational terms, andmoreover how the
apparatus of relational language helps us discover a few unfamiliar surprises—such
as the beautifully accurate idea that your spouse is your self-in-law.

1 �e language of relations

Terms

�is section introduces the mathematical underpinnings, including de�nitions and
notations.

If you have a set of things B and a set of things A, the cartesian product of B
and A is the set of all possible ordered pairs where the �rst item is from B and the
second item is from A. �e cartesian product is denoted B ×A.

B ×A ≡ {〈b, a〉 : b ∈ b, a ∈ A}

A (binary) relation between a set of thingsB and a set of things A is any subset
of the cartesian product B × A. Intuitively, a relation is the set of things that you
consider to be related to each other. For example, the less-than relation≤ on positive
integers is formally the set of all pairs of integers where the �rst item is less than or
equal to the second:

≤= {〈m,n〉 : m ≤ n} = {〈1, 1〉, 〈1, 2〉, 〈2, 2〉, 〈1, 3〉, . . .}

Well-known examples of relations inmathematics include≤ and 6=. By extension
from these familiar examples, if R is any relation, you can use the notation bRa to
mean that b is related to a, or formally that 〈b, a〉 ∈ R.
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If you have any relation R ⊆ B ×A, you can form the opposite relation R◦ ⊆
A×B. �e opposite relation is formally de�ned as

R◦ ≡ {〈a, b〉 ⊆ A×B : 〈b, a〉 ∈ R}

Intuitively, R◦ is the reverse of the relationship R:

• When R is the is-parent-of relation, R◦ is the is-child-of relation.
• When R is the ≤ relation, then R◦ is the ≥ relation.
• WhenR is the lives-in-place relation between people and geographic locations,
then R◦ is the contains-inhabitant relation between geographic locations and
people.

A relation can either be between two di�erent setsB×A, or the same setA×A.
For any set of things A, there is a special identity relation idA ⊆ A × A , where
each item in A is related to itself and nothing else. In some contexts, it’s useful to
think of the identity relation as meaning “is the same as” for the set A.

Relations can be contained in one another: if R and S are two relations on
B × A, we use the standard notation R ⊆ S to mean that R is a subset of S. In the
context of relations, this means that R is a more restrictive form of the relationship
S. For example, the relation < is more restrictive than the relation ≤.

Relations can also be intersected with one another: ifR and S are two relations
on B×A, we use the standard notation R∩S to refer to the intersection of the two
relations as sets. In the context of relations,R∩S is the relation “bRa and also bSa”.

Relations can be composed with one another: if S is a relation on C × B and
R is a relation on B ×A, then S ·R is a relation on C ×A de�ned by

S ·R ≡ {〈c, a〉 : cSb and bRa}

For example, if S is the relation is-parent-of and R is the relation is-friend-of,
then S ·R is the relationship is-parent-of-friend-of andR ·S is is-friend-of-parent-of.
You can prove to yourself that identity relations cancel when you compose them:
idB ·R = R · idA = R.

Conditions

Some relations have special properties. �is section lists the names and de�nitions
of some of the important properties. For the purposes of this section, all relations
are assumed to be on the same set: R ⊆ A×A.

If you have seen terms like transitivity before, one surprise is how the relational
algebra operators ◦, ⊆, ∩, and · allow you to describe familiar relational terms in a
succinct and point-free manner, e.g. re�exivity (idA ⊆ R), symmetry (R = R◦),
and transitivity (R ⊆ R ·R).

Re�exive A relation on A × A is re�exive if every item is related to itself. For
example, relations like = and ≤ and “has compatible blood type with” are
re�exive, while 6= and < and “is parent of” are not. Formally, a relation on
A×A is re�exive if idA ⊆ R.



Core�exive A relation on A × A is core�exive if R ⊆ idA (this is the dual of the
condition for being re�exive). �e core�exive relations on A× A correspond
to the subsets of A: if S is any subset of A, then {〈a, a〉 ∈ A × A : a ∈ S} is
a core�exive relation, and all core�exive relations have this form.

Symmetric A relation on A × A is symmetric if whenever bRa, it’s also true that
aRb. For example, is-sibling-of is symmetric while is-parent-of is not. For-
mally, a relation on A×A is symmetric if R = R◦.

Transitive A relation on A × A is transitive if whenever cRb and bRa, you can
always conclude that cRa. For example, relations like≤ are transitive because
whenever c ≤ b and b ≤ a, you can always conclude that c ≤ a. On the other
hand, relations like 6= are not transitive: if you have c 6= b and b 6= a, you
don’t necessarily know that c 6= a. Formally, a relation on A×A is transitive
if R ⊆ R ·R.

Irre�exive A relation on A×A is irre�exive if no item is ever related to itself. For
example, the is-parent-of relation is irre�exive provided no one is their own
parent. Formally, a relation A×A is irre�exive if R ∩ idA = ∅.

Antisymmetric A relation onA×A is antisymmetric if the only time we have both
bRa and aRb is when a = b. For example, the ≤ relation is antisymmetric,
while the is-sibling-of relation is not. Formally, a relation is antisymmetric
when R ∩R◦ ⊆ idA

Equivalence A relation onA×A is an equivalence relation if it is re�exive, symmet-
ric, and transitive. Intuitively, equivalence relations capture a sense in which
items can be “the same as” one another. For example, “has the same height” is
an equivalence relation on buildings.

2 Human relationships

In this section, we apply the language of relations to human relationships. �ese are
a special case of relationships on the set of all people.

�e Spousal relation

�e spousal relation U is the relationship is-spouse-of. (“U ” can be a mnemonic for
union, uxorial, etc.) Depending on the rules and customs of your society, the spousal
operator may have di�erent required or observed properties.

�is section lists some of those properties along with their formal de�nition in
relational terms. As a fun exercise, you may try to determine for yourself a formal
relational de�nition of each concept before looking at mine. For that purpose, the
relationship properties I will de�ne are:

Symmetry, irre�exivity, monogamy (each person has atmost one spouse),
one-sided monogamy (each person in a set E has at most one spouse;
other people are unrestricted), celibacy (each person in a set E has no



spouse; other people are unrestricted), transitivity (if c is b’s spouse and
b is a’s spouse, then c is a’s spouse), in-grouping (people are divided
into distinct groups, and people must marry within the same group),
and out-grouping (people are divided into distinct groups, and people
must marry into a di�erent group.)

De�nitions follow.

Symmetry Usually, if a is b’s spouse, then b is a’s spouse. U ◦ = U .

Irre�exivity Usually, you cannot be your own spouse. U ∩ id = ∅.

Monogamy �emonogamy condition—the condition that each person have at most
one spouse—is neatly expressed as the requirement that U ◦ · U ⊆ id (“my
spouse’s spouse can only be me.”)1

One-sided monogamy Suppose only a subsetE of people is required to bemonog-
amous while the rest are unrestricted. We can express this condition succinctly
asU ◦ ·Ê ·U ⊆ Ê, where here Ê refers to the core�exive relation correspond-
ing to the subset E. (Intuitively, this de�nition reads: If your spouse is some-
one from E, their spouse must be you.) Monogamy in the previous de�nition
implies every kind of one-sided monogamy.

Celibacy/Nilgamy Suppose a subset of peopleE is required not to have any spouse
at all. �is condition is U ◦ · Ê = Ê ·U = ∅. (“No person in E has a spouse,
and no one has a person in E as a spouse.”).

Transitivity �e spousal relation will be transitive if all marriages are “mutual” in
a certain sense; for example, in order to be transitive, a symmetric spousal re-
lation must be re�exive and e.g. “altergamous” in the sense that each person
has their own self and at most one other person as a spouse. (It is sometimes
useful to stretch the everyday de�nition of spousehood such that each person
is considered to be their own spouse.) �e spousal relation might not be transi-
tive if concubine-like polygamous relationships exist, in which case there may
be two people married to the same person but not to each other.

In-grouping/Endogamy Suppose society is partitioned into particular demographic
groups and one can only have a spouse from the same group as one’s self. (Ex-
amples include conditions based on nationality, race, class, or caste.) Let us
capture the notion of these groups as a relation G “belongs to the same in-
group as”. (Presumably,G is re�exive and symmetric, like an equivalence rela-
tion, but possibly not transitive.) �e in-grouping condition is simply U ⊆ G
(“being spouses is a strictly stronger condition than belonging to the same in-
group”).

1�is de�nition of monogamy looks reminiscent of the de�nition of a unitary transformations in
linear algebra. And there’s some conceptual similarity in the oneness of mono-gamy and the oneness
of unit-ary transformations. Because I think that’s neat, I write the de�nition as U ◦ · U instead of the
simpler equivalent de�nition U · U even though the spousal relation is typically symmetric.



Out-grouping/Exogamy Suppose society is partitioned into particular groups and
one can only have a spouse from a di�erent group. (Examples include condi-
tions based on kinship2 or gender.) IfG again denotes the relation “belongs to
the same in-group as”, then the out-grouping condition is simply U ∩G = ∅.

In-laws

We can form in-law relations by composing with U . For example, if R denotes the
is-parent-of relation, then R ·U denotes the relation relating people to the parents
of their spouses—what we commonly refer to as the relation parent-in-law.

If R is instead the sibling relation, then this same construction R ·U yields the
“spouse’s sibling” relation—sibling-in-law.

In English, there are two kinds of sibling-in-law: your sibling’s spouse and your
spouse’s sibling. �ese are generally di�erent because U · Sibling 6= Sibling ·U . In
general, we can �ll out a table with di�erent kinship relations R, and the everyday
meaning of R ·U and U ·R.

We can �ll out a table where we list kinship relations R and the corresponding
constructsR·U andU ·R. �e entries will reveal how the concepts and terminology
for U ·R and R ·U di�er.

Kinship relation R R ·U U ·R

Parent parent-in-law parent’s spouse3
Sibling sibling-in-law (spouse’s sibling) sibling-in-law (sibling’s spouse)
Child step-child or child child-in-law
Self (R = id) spouse — self-in-law (!) [same]
Spouse (R = U ◦) self (monogamous) or metamour (polygamous) [same]

Friend(?) friend-in-law(?) (spouse’s friend) friend-in-law(?) (friend’s spouse)

�is table suggests thought-provoking new terminology and reveals surprising
relationships between existing terms.

Consider, for example, that if your spouse’s parent is your parent-in-law and
your spouse’s sibling is your sibling-in-law, then by extension, your spouse’s own
self ought to be your self-in-law (!). Note that in many communities and for many
practical and legal purposes—e.g. taxation, spousal testimonial privilege, medical
visitation—spouses can indeed be considered a legal extension of one’s own self.

Or consider the potentially novel idea that the concepts child-in-law and step-
child are dual to one another: one is your child’s spouse and the other is your spouse’s
child—and both are ways of adding a child into your family via a marriage. In one
case, it is your marriage which introduces the new child; in the other, it is your child’s
marriage4.

2i.e. prohibitions against incest
4Actually, this duality is not special to step-children and children-in-law: analogous reasoning applies

to all other pairs of relationsR ·U and U ·R in a row of the table. Both relations must be ways of adding



Or if we extend our relations R to include non-kinship relations, we can coin
humorous new terms such as friend-in-law for our spouse’s friends (or friends’
spouses), or perhaps even house-in-law for our spouse’s house, hometown-in-
law for our spouse’s hometown, or vocation-in-law for our spouse’s vocation (es-
pecially a spousal vocation that one is personally invested in).

For the less-legally-inclined, all results in this article apply equally well to other
interpersonal relationships besides marriage.

3 A side note on cousins

�e terminology for �rst, second, and nth cousins is sometimes bewildering, even
before the term “k times removed” is introduced. �e relational apparatus we have
developed may make it easier to express these consanguinity relations.

• Cousins are people with whom we share a common ancestor.

• Removal occurs when cousins belong to di�erent generations.

• �e parental relation P relates people to their parents: bPameans that b is the
parent of a.

• Interestingly, we can express the sibling relation as P ◦ · P .

• Grandparents are P 2 = P ·P , and �rst cousins are essentially (P ◦ ·P ◦) · (P ·
P )—they’re people with whom you share grandparents.

• More generally, nth cousins are people for whom your closest common ances-
tor is n+1 generations above you. We may as well write that your nth cousin
is (P ◦)n+1Pn+1. By extreme extension of this reasoning, your siblings are
your 0th cousins, and you are your own -1th cousin.

• �ere’s a slight bug in this initial de�nition, as it includes too many people—
you, your siblings, your cousins, and your second cousins all share great-
grandparents, whereas only second cousins share nothing else. If we want
the de�nition of cousins to be proper, we should actually de�ne nth cousins to
be

C−1 = id {sel�ood}
C0 = P ◦P − id {siblings}

Cn+1 = P ◦CnP − id {(n+ 1)th cousins}

a newR to your family, either by you marrying someone, or by yourRmarrying someone. However, the
English terminology usually exposes the similarity, whereas child-in-law and step-child does not—hence
I �nd the case R = child to be especially novel.



• “Removal” occurs whenever you and another person have a common ancestor
but belong to di�erent generations. For example, you and your cousin’s child
have the same common ancestor as you and your cousin, but you are one gen-
eration apart. Hence you and your cousin’s child are �rst cousins, one time
removed.
In general, the relation “nth cousin, k times removed” refers to

CnP
k ∪ P kCn ∪ Cn(P

◦)k ∪ (P ◦)kCn.

(i.e. k generations up or down from your nth cousins.)

• Amusingly, by extension of common usage to include siblings as “0th cousins”,
your parents and their siblings are your “0th cousins, once removed”, as are
your children and your siblings’ children. Similarly, your grand-parents and
their siblings are your “0th cousins, twice removed”, as are your grandchildren
and your siblings’ grandchildren.


