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1 Kellogg’s two nomographability criteria

Fix F (x, y, z), and pick one of the variables, say z.

Kellogg’s �rst necessary criterion. If F can be represented directly* as a
nomogram, then the following matrix must have less than full rank:

F Fz Fzz Fzzz

Fx Fzx Fzzx Fzzzx

Fy Fzy Fzzy Fzzzy

Fxx Fzxx Fzzxx Fzzzxx

Fxy Fzxy Fzzxy Fzzzxy

Fyy Fzyy Fzzyy Fzzzyy

Fxxx Fzxxx Fzzxxx Fzzzxxx

Fxyy Fzxyy Fzzxyy Fzzzxyy

Fxxy Fzxxy Fzzxxy Fzzzxxy

Fyyy Fzyyy Fzzyyy Fzzzyyy


(�e�rst row isF, Fz, Fzz, Fzzz . Subsequent rows are all possible deriva-
tives of the �rst row with respect to x and y, up to order 3.)

You can �ll out the entries of the matrix by di�erentiating F . You can
determine its rank by pu�ing thematrix in row-echelon form and count-
ing the number of pivot rows. If the rank is four, then F can’t be nomo-
grammed directly. If the rank is less than four, the test is inconclusive.

Kellogg’s second necessary criterion. If F can be represented directly as a
nomogram, then you can decompose it as:

F (x, y, z) = A1(x, y)f1(z) +A2(x, y)f2(z) +A3(x, y)f3(z) (1)

For any* such decomposition, the following twomatrices must have zero
determinant:

det


A1 A2 A3

A1x A2x A3x

A1xx A2xx A3xx

 = 0
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det


A1 A2 A3

A1y A2y A3y

A1yy A2yy A3yy

 = 0

To apply this test, you must, by whatever means, decompose F into
the form (1) above1. �at decomposition yields functions A1, A2, A3

which you can plug into these matrices. If either matrix has a nonzero
determinant, then it is impossible to directly nomographF . In particular,
no other decomposition will work.

1See Warmus’s algorithm, in Section 3, to see how you can decompose a function like this if you can
�nd places where functions are non-zero.
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2 Proof of Kellogg’s criteria

I’ll describe the �ow of the argument, then provide some proofs. Let F (x, y, z) be
a function we want to nomogram, and without loss of generality choose one of the
variables, say z.

1. First we establish that if we can construct a direct nomogram for F , then2

the functions F, Fz, Fzz, Fzzz must be linearly dependent in a certain way.
Speci�cally, we can �nd coe�cient functions c0, c1, c2, c3, not all zero, such
that:

c0(z)F (x, y, z)+c1(z)Fz(x, y, z)+c2(z)Fzz(x, y, z)+c3(z)Fzzz(x, y, z) = 0

2. Second, we prove a lemma about linear dependence: four bivariate functions
p(x, y), q(x, y), r(x, y), s(x, y) are linearly independent if and only if the fol-
lowing matrix has rank less than four:

p q r s

px qx rx sx

py qy ry sy

pxx qxx rxx sxx

pxy qxy rxy sxy

pyy qyy ryy syy

pxxx qxxx rxxx sxxx

pxyy qxyy rxyy sxyy

pxxy qxxy rxxy sxxy

pyyy qyyy ryyy syyy


3. Finally, if you pick a �xed but arbitrary value of z, the functionsF, Fz, Fzz, Fzzz

are bivariate functions of x and y. Applying the lemma to these four functions
establishes Kellogg’s �rst criterion.

2Under typically well-behaved conditions
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4. For the second criterion, supposewe can �nd a direct nomogram forF (x, y, z).
By de�nition, this means we can �nd nine single-variable functions such that:

F (x, y, z) = det


f1(x) f2(x) f3(x)

g1(y) g2(y) g3(y)

h1(z) h2(z) h3(z)


.

5. Expanding this determinant along the bo�om row, we �nd an expansion of the
form:

F (x, y, z) = A1(x, y)h1(z) +A2(x, y)h2(z) +A3(x, y)h3(z)

6. �ere is a result in linear algebra that a matrix with two matching rows must
have a zero determinant. For this reason, we know that the following matrices
have zero determinant:

det


f1(x) f2(x) f3(x)

g1(y) g2(y) g3(y)

g1(y) g2(y) g3(y)

 = 0

det


f1(x) f2(x) f3(x)

g1(y) g2(y) g3(y)

f1(x) f2(x) f3(x)

 = 0

7. By expanding these two determinants along the bo�om row, we �nd that:

A1(x, y)g1(y) +A2(x, y)g2(y) +A3(x, y)g3(y) = 0 (2)

A1(x, y)f1(x) +A2(x, y)f2(x) +A3(x, y)f3(x) = 0 (3)

where A1, A2, A3 are the same functions as before.

8. �e �rst equation establishes that3, for any �xed y, the functions A1, A2, A3

are linearly-dependent functions of x. �e second equation establishes that,
for any �xed x, the functions A1, A2, A3 are linearly-dependent functions of
y.

3As long as the coe�cients are not degenerate

https://en.wikipedia.org/wiki/Determinant
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9. We need another lemma about linear independence, this time for univariate
functions: Functions p(x), q(x), r(x) are linearly dependent if and only if the
following matrix has zero determinant:

det


p q r

px qx rx

pxx qxx rxx

 = 0.

10. Applying this lemma to our two equations establishes Kellogg’s second crite-
rion.
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1�eorem If you can �nd a direct nomogram for F (x, y, z), then F, Fz, Fzz, Fzzz

are linearly dependent (as functions of x and y).

Proof. 1. Suppose we can �nd a direct nomogram for F (x, y, z). By de�nition,
this means we can �nd nine single-variable functions such that:

F (x, y, z) = det


f1(x) f2(x) f3(x)

g1(y) g2(y) g3(y)

h1(z) h2(z) h3(z)

 .

2. If you expand this determinant along a single row, e.g. the �nal row, you get a
decomposition which has the form:

F (x, y, z) = A1(x, y)h1(z) +A2(x, y)h2(z) +A3(x, y)h3(z). (4)

�is is a weighted sum of functions of z where the coe�cients depend only on
x and y.

3. If you di�erentiate this equation (4) three times with respect to z, you obtain
a system of four equations:

F = A1(x, y)h1(z) +A2(x, y)h2(z) +A3(x, y)h3(z)

Fz = A1h
′
1(z) +A2h

′
2(z) +A3h

′
3(z)

Fzz = A1h
′′
1(z) +A2h

′′
2(z) +A3h

′′
3(z)

Fzz = A1h
′′
1(z) +A2h

′′
2(z) +A3h

′′
3(z)

Fzzz = A1h
′′′
1 (z) +A2h

′′′
2 (z) +A3h

′′′
3 (z)

Expressed in vector notation, this system is:

−


F

Fz

Fzz

Fzzz

+A1(x, y)


h1

h′1

h′′1

h′′′1

+A2(x, y)


h2

h′2

h′′2

h′′′2

+A3(x, y)


h3

h′3

h′′3

h′′′3

 =


0

0

0

0



https://en.wikipedia.org/wiki/Determinant
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4. We’ve found a weighted sum of column vectors which is zero everywhere. If
we �x a particular value of x and y, then theAi become constants and we �nd
that these column vectors are linearly dependent functions of z4.

�ere is a theorem in linear algebra that a matrix has zero determinant if and
only if its columns are linearly dependent. So we can assemble these column
vectors into a matrix whose determinant is guaranteed to be zero everywhere
(i.e. for all x, y, z,):

det


F h1 h2 h3

Fz h′1 h′2 h′3

Fzz h′′1 h′′2 h′′3

Fzzz h′′′1 h′′′2 h′′′3

 = 0 (5)

5. If you expand the determinant 5 along the �rst column, you obtain a weighted
sum of F, Fz, Fzz, Fzzz :

∣∣∣∣∣∣∣∣
h1 h2 h3

h′1 h′2 h′3

h′′1 h′′2 h′′3

∣∣∣∣∣∣∣∣Fzzz−

∣∣∣∣∣∣∣∣
h1 h2 h3

h′1 h′2 h′3

h′′′1 h′′′2 h′′′3

∣∣∣∣∣∣∣∣Fzz+

∣∣∣∣∣∣∣∣
h1 h2 h3

h′′1 h′′2 h′′3

h′′′1 h′′′2 h′′′3

∣∣∣∣∣∣∣∣Fz−

∣∣∣∣∣∣∣∣
h′1 h′2 h′3

h′′1 h′′2 h′′3

h′′′1 h′′′2 h′′′3

∣∣∣∣∣∣∣∣F = 0

(6)

And this equation holds for any choice of x, y, z. Note that F, Fz, Fzz, Fzzz

are functions of (x, y, z), while the coe�cients are functions of z only.

6. If we �x a value of z, equation 6 shows5 that {F, Fz, Fzz, Fzzz} are linearly
independent, considered as functions of x and y.

2 Lemma A set of four bivariate functions

{p(x, y), q(x, y), r(x, y), s(x, y)}

is linearly dependent if and only if the following 4 × 10 matrix has rank less than
four:

4As long as some of the Ai are nonzero.
5As long as the coe�cients are not trivial.



CONTENTS 9



p q r s

px qx rx sx

py qy ry sy

pxx qxx rxx sxx

pxy qxy rxy sxy

pyy qyy ryy syy

pxxx qxxx rxxx sxxx

pxyy qxyy rxyy sxyy

pxxy qxxy rxxy sxxy

pyyy qyyy ryyy syyy


Proof. Here, the matrix consists of the four functions, as well as all of their partial
derivatives up to order three. �e proof of the result is tedious. See Epstein’s Nomog-

raphy, Chapter 8 for details.
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3 Decompositions are well-behaved

Constructing a nomogram for a function F (x, y, z) involves looking for a way to
decompose it into a sum of products of single-variable functions like this:

F (x, y, z) =
∑
i

fi(x)gi(y)hi(z), (7)

because this is the form a nomographable function takes when you write it as a
determinant:

F (x, y, z) = det


f1(x) f2(x) f3(x)

g1(x) g2(x) g3(x)

h1(x) h2(x) h3(x)


I found the trial-and-error process uncertain: Sometimes you can’t �nd a decomposition—

but maybe you’re overlooking one, or maybe one doesn’t exist at all. Sometimes you
�nd a decomposition with too many terms—maybe you can simplify it, or maybe
there’s a completely di�erent-looking decomposition with fewer terms.

Based on the approach of Warmus and my own proofs, I’ve managed to clear the
air on these decompositions. It turns out that decompositions are well-behaved, and
there are procedural ways to �nd them (or prove that they don’t exist). In particular:

1. You can automatically �nd a minimal decomposition. �ere is an algorithm for
automatically decomposing a function f(x, y, z) into the form 7. �e resulting
form is minimal; it can’t be simpli�ed further by consolidating terms.

2. You can automatically simplify decompositions. Suppose you come up with
a decomposition yourself. You can use “linear independence” tests to check
whether the decomposition can be simpli�ed, and to produce that simpler de-
composition if so.

3. All irreducible decompositions have the same number of terms. Here’s the sce-
nario I worried about: In a typical case, I might �nd a decomposition that was
had too many terms to be nomographable, check that it was irreducible (i.e.
couldn’t be made shorter by consolidating terms), and conclude that the func-
tion overall couldn’t be nomographed. But what if the problem was only a bad
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choice of decomposition? What if it were possible to �nd a shorter decompo-
sition using completely di�erent factors?

�ere might exist, for example, a 5-term decomposition and a 3-term decom-
position, both of which couldn’t be simpli�ed further (theymight use di�erent,
incommensurate factors such that there’d be no way to simplify the 5-term de-
composition into the 3-term one.) In other words, I was worried that I might
�nd an irreducible decomposition that was nonetheless not as short as the
shortest possible decomposition.

It turns out this can never happen—all minimal decompositions have the same
number of terms. And if you have one minimal decomposition, you can make
all others through linear combinations of the factors. �is also means that if
you use the procedure for �nding a minimal decomposition of f(x, y, z) and
it has too many terms to be nomographable, you can be sure that no other
decomposition will work.

I describe Warmus’s procedure for automatically �nding a minimal decomposi-
tion of any function in the next section. For proofs and more detail, you can consult
Warmus’s 1959 paper Nomographic functions.

�e simpli�cation procedure comes from Warmus’s work. �e theorem is that a
decomposition like 7 is minimal if and only if the fi are all linearly independent, as
are the gi and the hi. So to simplify, checkwhether the fi are all linearly independent,
as are the gi and the hi. If they aren’t, you can consolidate terms.

To check whether terms are linearly independent, you can use the theorem that
f1, . . . , fn are linearly independent if and only if you can �nd x1, . . . , xn such that
the matrix [fi(xj)]i,j ] has a nonzero determinant. Practically speaking, choosing
random xi should work.

�e proof that everyminimal decomposition has the same number of terms comes
from this matrix determinant-based de�nition of linear independence. Proof is here
on Math StackExchange, though I intend to write it up myself here.

https://math.stackexchange.com/questions/3498669/linear-independence-when-writing-a-function-as-a-sum-of-functions/3498825
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4 Warmus’s constructive procedure

Warmus establishes an automatic procedure for building a nomogram out of any
function, or else proving that the function is not nomographable.

Subroutines Warmus’s procedure can be done automatically by computer, and
depends only on a few simple subroutines:

• Find support. Given a function of up to three variables, �nd a point where
that function is nonzero. (Although this is di�cult to do deterministically, for
practical smooth functions, I expect even random search would quickly �nd
such a point.)

• Compute determinants. Compute the determinant of a 2× 2 or larger matrix.
• Find independence certi�cate. Given functions f1, . . . , fn, �nd pointsx1, . . . , xn

such that the determinant of the matrix [fi(xj)]i,j is nonzero. �is is possible
if and only if the fi are linearly independent6.

Rank �e key concept for Warmus’s method is the rank of a function. A bivari-
ate function G(u, v) has rank n if there exist univariate functions U1(u), . . . , Un(u)

and V1(v), . . . , Vn(v) such that G(u, v) = U1(u)V1(v) + . . .+ Un(u)Vn(v), and no
smaller set of functions will work.

Note that in a decomposition G ≡
∑n

i=1 UiVi, the Ui must all be linearly inde-
pendent and the Vi must all be linearly independent; otherwise, you could consol-
idate some terms and form a shorter sum, contradicting the fact that the rank n is
minimal.

As a theorem, a function has rank greater than n if and only if there exist n+ 1

pairs of points 〈ui, vi〉 such that the matrix [G(ui, vj)] has nonzero determinant.

Finding the rank and decomposition of a function To �nd the rank and de-
composition of a functionG, we’ll de�ne a particular sequence of functionsG0, G1, G2, G3, . . .

in terms of G.
6And �nding an independence certi�cate is really just �nding the support of a particular determinant.
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As a base case, de�ne G0(x, y) ≡ G. By induction on k, if Gk is identically zero,
then the rank of G is k and we are done. Otherwise, we �nd a point 〈ak, bk〉 in the
support of Gk and de�ne

Gk+1(x, y) ≡
1

Gk(ak, bk)

∣∣∣∣∣∣ Gk(ak, bk) Gk(ak, y)

Gk(x, bk) Gk(x, y)

∣∣∣∣∣∣
Generally, this sequence will lead7 to a functionGn which is identically zero; the

value of n is the rank of G. When you’ve found the rank n of G, you can compute a
decomposition G ≡

∑
i Ui(u)Vi(v) as follows. For i = 1, . . . , n, de�ne

Ui(x) ≡ Gi−1(x, bi−1)

Vi(y) ≡
Gi−1(ai−1, y)

Gi−1(ai−1, bi−1)

And we have, reportedly, that G =
∑n

i=1 Ui(x)Vi(y).

Rank of functions with three or more arguments You can extend the de�-
nition of rank to functions of three or more arguments, basically by dividing the
arguments into two nonempty groups so that you have a pair of “arguments” as in
the base two case. Divide the function’s arguments into two nonempty groups ~x and
~y, then as usual de�ne G0(~x, ~y) ≡ G and de�ne

Gk+1(~x, ~y) ≡
1

Gk(~ak,~bk)

∣∣∣∣∣∣ Gk(~ak,~bk) Gk(~ak, y)

Gk(x,~bk) Gk(~x, ~y)

∣∣∣∣∣∣
When you have more than two arguments, there are multiple ways to divide

arguments into groups and each way yields a potentially di�erent set of functions
and ranks; so when there are more than two arguments, we must be speci�c and
refer to rank with respect to a particular division ~x.

As a speci�c case, ifG(x, y, z) has three arguments, we can refer to its rank with
respect to x, which we would compute using terms like:

Gk+1(x, y, z) ≡
1

Gk(a, b, c)

∣∣∣∣∣∣ Gk(a, b, c) Gk(a, y, z)

Gk(x, b, c) Gk(x, y, z)

∣∣∣∣∣∣
7Some functions might not have �nite rank, in which case this process never terminates.
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Procedure for constructing nomograms Given a function F (x, y, z):

1. Compute the rank of F with respect to x, y, and z. (Call them rx, ry, rz)

2. Each rankmust be two or three; otherwise, the functionF is not nomographic.

3. Assume, by rearranging arguments if necessary, that the ranks of x, y, z are in
increasing order, so: (2,2,2), (2,2,3), (2,3,3) or (3,3,3). rx ≤ ry ≤ rz .

4. Form a rank decomposition of F with respect to x:

F (x, y, z) ≡
∑
k

Xk(x)Gk(y, z)

�is sum will have two or three terms in it, because the rank of F with respect
to x is two or three.

5. Compute the rank of each Gk . Each rank must be one or two. If any rank is
bigger than two, the function F is not nomographic.

6. If some of the Gk have rank one, there might be a problem. Consult the ranks
of F with respect to x, y, and z in order: rx ≤ ry ≤ rz .

If ry = 3, the function F is not nomographic.

Otherwise, if both of the Gk have rank one, the function is not nomo-
graphic.

7. Assume, by rearranging the terms in the sum F (x, y, z) ≡
∑

k Xk(x)Gk(y, z)

if necessary, that the ranks of the Gk are in decreasing order from largest to
smallest.

8. Having subdivided Gk(y, z) =
∑

` Y`(y)Z`(z), we have now formed a sum
that looks like

F (x, y, z) =
∑
k

Xk(x)
∑
`k

Y`k(y)Z`k(z).

�is form might at �rst have too many X , Y , or Z terms—we want the num-
ber of independent terms to match the rank of F with respect to x, y, and z

respectively. We can consolidate extra terms that are linearly dependent. (…)
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