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1 Kellogg’s two nomographability criteria
Fix F(z,y, z), and pick one of the variables, say z.

Kellogg’s first necessary criterion. If F' can be represented directly” as a

nomogram, then the following matrix must have less than full rank:

F Fz Fzz Fzzz
F;E Fzz Fzzw Fzzzw
F, Fzy F.zy Frazy
Fa:y an:y Fzzmy Fzzzwy
Fyy F.yy F.ryy Fzzyy
Frrm Fzrrr Fzzm:mr Fzzz.mcac
szy szzy Fzzza:y Fzzza:a:y
_Fyyy Fzyyy Fzzyyy Fzzzyyy_

(Thefirstrowis F, F,, F,,, F, .. Subsequent rows are all possible deriva-

tives of the first row with respect to x and y, up to order 3.)

You can fill out the entries of the matrix by differentiating F'. You can
determine its rank by putting the matrix in row-echelon form and count-
ing the number of pivot rows. If the rank is four, then F' can’t be nomo-

grammed directly. If the rank is less than four, the test is inconclusive.

Kellogg’s second necessary criterion. If F' can be represented directly as a

nomogram, then you can decompose it as:
F(x,y,2) = Au(z,9) f1(2) + A2(2,9) f2(2) + As(2,9) f3(2) (1)

For any™ such decomposition, the following two matrices must have zero

determinant:

Aq Ay As
det Al T AQ T A3 T =0
Al T A213:v Adm’z
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Ay Ay Az
det | A, y A2y
Alyy A2yy A3yy

To apply this test, you must, by whatever means, decompose F' into
the form (1) aboveﬂ That decomposition yields functions A;, As, Ag
which you can plug into these matrices. If either matrix has a nonzero
determinant, then it is impossible to directly nomograph F'. In particular,

no other decomposition will work.

1See Warmus’s algorithm, in Section 3, to see how you can decompose a function like this if you can
find places where functions are non-zero.
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2 Proof of Kellogg’s criteria

I'll describe the flow of the argument, then provide some proofs. Let F(z,y, z) be
a function we want to nomogram, and without loss of generality choose one of the

variables, say z.

1. First we establish that if we can construct a direct nomogram for F, the
the functions F, F,, F,., F.., must be linearly dependent in a certain way.
Specifically, we can find coefficient functions cy, c1, ce, c3, not all zero, such

that:

co(2)F(z,y,2)+c1(2)Fo(x,y, 2)+co(2) Fon(m,y, 2)+c3(2) Farn(2,y,2) =0

2. Second, we prove a lemma about linear dependence: four bivariate functions
p(z,y),q(z,y),r(x,y), s(x,y) are linearly independent if and only if the fol-

lowing matrix has rank less than four:

p q r S

Py dy Ty Sy
Dza Qrx Tzx Sxx

DPzy qzy Tzy Sy
Pyy  dyy  Tyy  Syy
Paryy  Qeyy Tzyy Sazyy

Przy Gray Tazy Szxy

| Pyyy  Qyyy  Tyyy  Syyy |

3. Finally, if you pick a fixed but arbitrary value of z, the functions I, F,, F,,, I .,
are bivariate functions of « and y. Applying the lemma to these four functions

establishes Kellogg’s first criterion.

2Under typically well-behaved conditions
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4. For the second criterion, suppose we can find a direct nomogram for F'(z, y, z).

By definition, this means we can find nine single-variable functions such that:

hi(z) ha(z) hs(z)

5. Expanding this determinant along the bottom row, we find an expansion of the

form:
F(JJ, Y, Z) = Al(xa y)hl(z) + AQ(J:’ y)hQ(Z) + AS(xv y)h?)(z)

6. There is a result in linear algebra that a matrix with two matching rows must
have a zero determinant. For this reason, we know that the following matrices

have zero determinant:

fi(x)  folz)  f3(z)
det |g1(y) ga2(y) g3(y)| =0
a1(y)  g2(y) 93(v)

fi@) folz)  f3(@)]
det |g1(y) ga2(y) g3(y)| =0
Lfi(@)  fa(z)  f3(z)

7. By expanding these two determinants along the bottom row, we find that:

Ar(w,y)g91(y) + A2(x,y)92(y) + Az(x,9)g93(y)

0 2)
Ax(z,y) f1(z) + Az(z,y) fa() + As(z, y) f3(x) = 0

®3)

where A1, Ay, Az are the same functions as before.

8. The first equation establishes tha for any fixed y, the functions A, Aa, A3
are linearly-dependent functions of x. The second equation establishes that,

for any fixed x, the functions Ay, A2, Ag are linearly-dependent functions of

Y.

3 As long as the coefficients are not degenerate


https://en.wikipedia.org/wiki/Determinant

CONTENTS 6

9. We need another lemma about linear independence, this time for univariate
functions: Functions p(x), g(x), r(z) are linearly dependent if and only if the

following matrix has zero determinant:

p q
det | p, gz 72| =0

Pzz  Qzx Tzx

10. Applying this lemma to our two equations establishes Kellogg’s second crite-

rion.
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1Theorem If you can find a direct nomogram for F'(z,y, z), then F, F,, F,,, F. .,
are linearly dependent (as functions of = and y).

Proof. 1. Suppose we can find a direct nomogram for F(z,y, z). By definition,

this means we can find nine single-variable functions such that:

hi(z) ha(z) hs(z)

2. If you expand this determinant along a single row, e.g. the final row, you get a

decomposition which has the form:
F(z,y,2) = Ai(z,y)h1(2) + A2(2, y)ha(2) + Az(z, y)hs(2). (4)

This is a weighted sum of functions of z where the coefficients depend only on

x and y.

3. If you differentiate this equation (4) three times with respect to z, you obtain

a system of four equations:

F = Ay(z,y)h1(2) + A2(2, y)ha(2) + As(z,y)hs(2)
F. = AR (2) + Ashb(2) + Ashi(2)
F.. = A1h{(2) + Ashi (z) + Ashi ()
Fy, = AihY(2) + A2hs (2) + Ashs(2)
Foon = Athy'(2) + Aghy'(2) + Ashy'(2)

Expressed in vector notation, this system is:

F hi ha hs 0
F, h h : 0

- +Ai(wyy) || FAa(@y) | 2]+ As(zy) | | =
FZZ 1 2 h3 O
FZZZ hll” h/2” hg/ 0


https://en.wikipedia.org/wiki/Determinant
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4. We’ve found a weighted sum of column vectors which is zero everywhere. If

we fix a particular value of x and y, then the A; become constants and we find

that these column vectors are linearly dependent functions of [

There is a theorem in linear algebra that a matrix has zero determinant if and

only if its columns are linearly dependent. So we can assemble these column

vectors into a matrix whose determinant is guaranteed to be zero everywhere

(i.e. forall x,y, z,):

F hi ha b3
F

/ / !/

det | 7 L =)
F.. W R Ry
F... b Y b

(©)

5. If you expand the determinant|[5|along the first column, you obtain a weighted

sumof F, F,, F,,, F,.,:

hi  hg hs hi  he  hs hy
Wy Wy By |Feom| By Ry By | Fet| WY
Weong oy Wy w

ha n
Wy by | Fe—| B
h/2// hg/ h/1//

(6)

And this equation holds for any choice of z,y, z. Note that F, F,, F., F,..

are functions of (z, y, z), while the coefficients are functions of z only.

6. If we fix a value of z, equation E] show that {F, F., F,,, F,..} are linearly

independent, considered as functions of = and y.

2 Lemma A set of four bivariate functions

{o(z, ), q(z,y),r(x,y), s(z,y)}

O

is linearly dependent if and only if the following 4 x 10 matrix has rank less than

four:

*As long as some of the A; are nonzero.
5As long as the coefficients are not trivial.

/
h2
"
h2
"
ha

/
hB
"
h3
"
hs
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P q r s
Dz qx Tz Sz
Py dy Ty Sy
DPzy qzy Tzy Sy
Pyy  Quyy  Tyy  Syy
Pzaxx GQrxx Tzazx Szzx
Pzyy  dzyy Tayy Szyy

Pzzy Gray Tazy Szxy

| Pyyy  Qyyy  Tyyy  Syyy |

Proof. Here, the matrix consists of the four functions, as well as all of their partial

derivatives up to order three. The proof of the result is tedious. See Epstein’s Nomog-

raphy, Chapter 8 for details. O
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3 Decompositions are well-behaved

Constructing a nomogram for a function F(z,y, z) involves looking for a way to

decompose it into a sum of products of single-variable functions like this:
F(a,y.2) =Y fi@)gi)hi(2), 7

because this is the form a nomographable function takes when you write it as a

determinant:

fiz)  fa(x)  fs(x)
Flz,y,z) =det | gi(2) go(z) gs(x)
hi(z)  ha(x)  hs(z)
I'found the trial-and-error process uncertain: Sometimes you can’t find a decomposition—
but maybe you’re overlooking one, or maybe one doesn’t exist at all. Sometimes you
find a decomposition with too many terms—maybe you can simplify it, or maybe
there’s a completely different-looking decomposition with fewer terms.
Based on the approach of Warmus and my own proofs, I've managed to clear the
air on these decompositions. It turns out that decompositions are well-behaved, and

there are procedural ways to find them (or prove that they don’t exist). In particular:

1. You can automatically find a minimal decomposition. There is an algorithm for
automatically decomposing a function f(z, y, z) into the form[7] The resulting

form is minimal; it can’t be simplified further by consolidating terms.

2. You can automatically simplify decompositions. Suppose you come up with
a decomposition yourself. You can use “linear independence” tests to check
whether the decomposition can be simplified, and to produce that simpler de-

composition if so.

3. All irreducible decompositions have the same number of terms. Here’s the sce-
nario I worried about: In a typical case, I might find a decomposition that was
had too many terms to be nomographable, check that it was irreducible (i.e.
couldn’t be made shorter by consolidating terms), and conclude that the func-

tion overall couldn’t be nomographed. But what if the problem was only a bad
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choice of decomposition? What if it were possible to find a shorter decompo-

sition using completely different factors?

There might exist, for example, a 5-term decomposition and a 3-term decom-
position, both of which couldn’t be simplified further (they might use different,
incommensurate factors such that there’d be no way to simplify the 5-term de-
composition into the 3-term one.) In other words, I was worried that I might
find an irreducible decomposition that was nonetheless not as short as the

shortest possible decomposition.

It turns out this can never happen—all minimal decompositions have the same
number of terms. And if you have one minimal decomposition, you can make
all others through linear combinations of the factors. This also means that if
you use the procedure for finding a minimal decomposition of f(x,y, z) and
it has too many terms to be nomographable, you can be sure that no other

decomposition will work.

I describe Warmus’s procedure for automatically finding a minimal decomposi-
tion of any function in the next section. For proofs and more detail, you can consult
Warmus’s 1959 paper Nomographic functions.

The simplification procedure comes from Warmus’s work. The theorem is that a
decomposition like[7]is minimal if and only if the f; are all linearly independent, as
are the g; and the h;. So to simplify, check whether the f; are all linearly independent,
as are the g; and the h;. If they aren’t, you can consolidate terms.

To check whether terms are linearly independent, you can use the theorem that
fi,--., fn are linearly independent if and only if you can find 21, ..., z, such that
the matrix [f;(z;)];,;] has a nonzero determinant. Practically speaking, choosing
random z; should work.

The proof that every minimal decomposition has the same number of terms comes
from this matrix determinant-based definition of linear independence. Proof is here

on Math StackExchange, though I intend to write it up myself here.


https://math.stackexchange.com/questions/3498669/linear-independence-when-writing-a-function-as-a-sum-of-functions/3498825
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4 Warmus’s constructive procedure

Warmus establishes an automatic procedure for building a nomogram out of any

function, or else proving that the function is not nomographable.

Subroutines Warmus’s procedure can be done automatically by computer, and

depends only on a few simple subroutines:

« Find support. Given a function of up to three variables, find a point where
that function is nonzero. (Although this is difficult to do deterministically, for
practical smooth functions, I expect even random search would quickly find
such a point.)

« Compute determinants. Compute the determinant of a 2 X 2 or larger matrix.

« Find independence certificate. Given functions f1, ..., f,,findpoints z1, ..., x,
such that the determinant of the matrix [f;(z;)];,; is nonzero. This is possible

if and only if the f; are linearly independeniﬂ

Rank The key concept for Warmus’s method is the rank of a function. A bivari-
ate function G (u, v) has rank n if there exist univariate functions U; (u), . .., Uy, (u)
and V1 (v), ..., V,(v) such that G(u,v) = Uy (u)V1(v) + ... + Up(u)Vy (v), and no
smaller set of functions will work.

Note that in a decomposition G = >_"_, U;V;, the U; must all be linearly inde-
pendent and the V; must all be linearly independent; otherwise, you could consol-
idate some terms and form a shorter sum, contradicting the fact that the rank n is
minimal.

As a theorem, a function has rank greater than n if and only if there exist n 4 1

pairs of points (u;, v;) such that the matrix [G(u;, v;)] has nonzero determinant.

Finding the rank and decomposition of a function To find the rank and de-

composition of a function G, we’ll define a particular sequence of functions Gy, G1, G2, Gs, . . .

in terms of G.

¢ And finding an independence certificate is really just finding the support of a particular determinant.
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As a base case, define Go(z,y) = G. By induction on k, if Gy, is identically zero,
then the rank of G is k and we are done. Otherwise, we find a point (aj, by) in the

support of G, and define

1 Grlax,by) Grlar,y)

Grni(@,9) = 7
OV = Gt | Gueby)  Guleny)

Generally, this sequence will lea{] to a function G, which is identically zero; the
value of n is the rank of G. When you’ve found the rank n of G, you can compute a

decomposition G = ), U;(u)V;(v) as follows. Fori = 1,...,n, define

Ui(z) = Gi—1(z,bi—1)
Gi-1(ai-1,y)

Gi—1(ai-1,bi—1)

And we have, reportedly, that G = """, U;(2)V;(y).

Vily) =

Rank of functions with three or more arguments You can extend the defi-
nition of rank to functions of three or more arguments, basically by dividing the
arguments into two nonempty groups so that you have a pair of “arguments” as in
the base two case. Divide the function’s arguments into two nonempty groups  and

7, then as usual define G (%, ) = G and define

1 Gr(@r,br)  Gr(dr,y)

Grr1(Z,9) = ———=—
Gr(ar,br) | Gi(z,by)  Gir(Z,7)

When you have more than two arguments, there are multiple ways to divide
arguments into groups and each way yields a potentially different set of functions
and ranks; so when there are more than two arguments, we must be specific and
refer to rank with respect to a particular division .

As a specific case, if G(x, y, z) has three arguments, we can refer to its rank with

respect to x, which we would compute using terms like:

1 Gk(aab7 C) Gk(avyvz)

Gri1(2,y,2) = Z——s
k1 ( ) Gi(a,b,c) Gr(z,b,¢) Gi(x,y,2)

7Some functions might not have finite rank, in which case this process never terminates.
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Procedure for constructing nomograms Given a function F'(z,y, 2):

1.

2.

Compute the rank of I with respect to z, ¥, and 2. (Call them 74,7, 1)
Each rank must be two or three; otherwise, the function F' is not nomographic.

Assume, by rearranging arguments if necessary, that the ranks of x, y, z are in

increasing order, so: (2,2,2), (2,2,3), (2,3,3) or (3,3,3). vy <1y <7

Form a rank decomposition of F' with respect to :
F(z,y,z Z Xy (2)Gr(y, 2)

This sum will have two or three terms in it, because the rank of F' with respect

to x is two or three.

Compute the rank of each G,. Each rank must be one or two. If any rank is

bigger than two, the function F' is not nomographic.
If some of the G, have rank one, there might be a problem. Consult the ranks
of F' with respect to x, y, and z in order: r, <7y, <7,.

If r, = 3, the function F’ is not nomographic.

Otherwise, if both of the G, have rank one, the function is not nomo-

graphic.

Assume, by rearranging the terms in the sum F'(z,y, 2) = >, Xi(2)Gr(y, 2)
if necessary, that the ranks of the G, are in decreasing order from largest to

smallest.

Having subdivided G (y,2) = >, Ye(y) Zi(2), we have now formed a sum
that looks like

Z‘ y Y, 2 ZX]C an ka

This form might at first have too many X, Y, or Z terms—we want the num-
ber of independent terms to match the rank of F' with respect to z, y, and z

respectively. We can consolidate extra terms that are linearly dependent. (...)
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